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Square billiard with a magnetic flux
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Eigenstates and energy levels of a square quantum billiard in a magnetic field, or with an Aharonov-Bohm
flux line, are found in quasiclassical approximation, that is, for high-enough energy. Explicit formulas for the
energy levels and wave functions are found. A number of interesting states are shown, together with their wave
functions. Some states are diamagnetic, others paramagnetic, still others both dia- and paramagnetic. Some
states are strongly localized. Related systems and possible experiments are briefly mentioned.

PACS numbds): 05.45~a, 03.65.Sq, 03.65.Ge

[. INTRODUCTION that persistent current®xist. In other words, it is possible
that the equilibrium state has a nontrivial current. Indeed, we

The behavior of mobile charged particles confined tofind that eigenstates of the quantum system have interesting
some region and also subjected to a magnetic flux has intecurrent densities. Although the wave function has a fairly
ested physicists since the discovery of the Hall effect over aimple representation, the currents can be quite complex.
century ago. Quantum effects turned out to be subtle an&ome states are predominantly paramagnetic, others are pre-
surprising, as attested by Landau diamagnetism and thdominantly diamagnetic. Still others may support both strong
Aharonov-Bohm[AB] effect [1]. About twenty years ago, paramagnetic and strong diamagnetic currents that in total
with the advent of the quantum Hall effect and mesoscopitearly cancel. However, these states strongly affected by the
systems, the two-dimensional case became prominent. Aield are rather rare and most states have weak persistent
about the same time, the development of the subject ofurrents.

“quantum chaos” also focused interest on such systems as ldeas from the field of quantum chaos have also moti-
being among the simplest of the “Gaussian unitary en-wated much work. Since the magnetic field intuitively has
semble” universality class. circular symmetry, which “conflicts” with the symmetry of

There is thus a long history of work on the confined quan-the square, one might expect chaos to er&ijeas is the
tum motion of charged particles in a magnetic flux. It is case with the Sinai billiard. Another theme of quantum chaos
remarkable that all previous workers overlooked the fact thais that of energy level and wave-function statisfié$ These
many fundamental cases, some of which have been extestatistics depend on whether time-reversal symmétny
sively studied numerically, can be solved and classified anasther antiunitary symmetjyis in force. A natural way to
lytically to good approximation. Moreover, the results havebreak time reversal is by a magnetic fliXhe square with a
an interesting and suggestive complexity. uniform flux still has an antiunitary symmetry, howeyer.

In this paper we obtain good approximate solutions to a Diffraction effects, in which a classical length shorter
couple of simply posed and well-studied problems of thisthan the wavelength becomes important, are much studied in
type. A preliminary version has appeared electronicilly  this context. This is obviously the case for the zero radius
Rather than stress the generality of our method, we focus oAharonov-Bohm flux line[7]. The sharp corners of the
a typical problem: a two-dimensional charged particle consquare also cause diffractive effects in the presence of a uni-
fined to a square billiard in a perpendicular magnetic flux.form magnetic field. These effects are much smaller than for
Certain conditions on the flux are required to justify the ap-the flux line, of course. We give estimates for the parameter
proximations, and we also require the energy of the particleange in which such diffraction becomes important, although
to be large. These approximate solutions are compared toe defer study of these effects.
numerical solutions. The two flux configurations considered Our main motivation however, is that we add to the store
are a uniform flux and an Aharonov-Bohm flux line. It is of solvable problems, and perhaps suggest some experi-
crucial that the square billiard is integrable. Systems othements. In the textbooks, there are relatively few such inte-
than the square to which our methods apply will be men-grable problems, basically, only those that reduce to one di-
tioned at the end. mension, or separate into several one-dimensional problems.

There are many recent research papers in which the basithe square without a magnetic flux is such a case in which
system studied is a square or rectangular billiard with a magthe x andy motion separates.
netic flux. A number of these are inspired by the experiments The traditional way to widen the class of approximately
of Lévy et al.[3,4], which measure the magnetic susceptibil- solvable problems is perturbation theory and indeed, our ap-
ity of a collection of a considerable number of mesoscopicproach is a form of quantum perturbation theory. We are able
two-dimensional metallic systems, each approximately do study systems that are integrable except for a “classically
square. The field is nearly uniform over the square in thisveak” perturbation. Of course, treating weak perturbations
case. classically is challenging, because the long-time behavior

In the presence of a magnetic flux, there is the possibilitymay be chaotic. However, quantum perturbation theory is
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better behaved and depends on the short-time rather than temoothness of the perturbation. We find that for the uniform
long-time classical behavior. field b=2, while for the ideal flux lineb=1. Note that for

On the other hand, perturbations small in this sense cafixed B the energy can be arbitrarily high, but if insteads
give rise to very large quantum effects, especially on theept fixed, there is a limitation on the energy.
wave functions. Moreover, even perturbations that change This high-energy condition is basically the requirement
some length scale by an amoudt <\, where\ is the  that diffraction effects not be too important. From a semi-
wavelength, can have big effects. In terms of the standarg|assical perspective, diffraction effects occur where the clas-
nomenclature, alegenerateperturbation theory is required, gjqq) system has a length scale as short or shorterxham

and a num_ber of qnperturbed states are _strongly mix_ed 9geal flux line obviously gives rise to diffraction effects. Bil-
gether to give the final result. Usually, this is done by d'ago'liards also have such a length scale of course, namely, the

nallzgnon _c:f ? smaIIHmatnx, butt|hn Oltjt: case tthdg matr||.x. distance it takes the confining potential to change from zero
can be quite 1arge. However, rather than Just diagonalizingy,qiqe the pilliard, to infinity outside the billiard. This can be
some matrix by a computer calculation, we obtain the resul

b intuitivel lina Schdinaer diff ial 0 aken into account by a “Maslov phase” af at the bound-
y an Intuitively appeaiing >c ger difterential eguation. ary, however. There are also the sharp corners of the square.

Having solved, this interesting class of problems, we d's'The square corners whose angular openingsil, where

gg\r;eer?gvsecl)rcT)]feaOthr(ca);inr‘:f;tri]oor?SV\cl); Zztaalllmrr]gstehr?t tshoélégorzeithgl@: 2 is an integer, are a special case at which no diffraction
PP ’ P ccurs[10]. With such an angle, the billiard can be extended

elsewherg8]. by reflection, and the corner in effect disappears. However,
in the presence of a magnetic field, this reflection technique
Il. SQUARE IN A UNIFORM FIELD does not work, and with sufficiently large field, orbits that hit

We begin with the case of uniform field. For given veloc- directly into the corner eventually become important to the

ity v, the cyclotron radius iR,=v/w.=cp/eB wherew,  Semiclassics.

=eB/mc, and p=mv. The momentump=#k=h/\ is

guantally related to wave numbkrand wavelengti\. We

define theclassical small parametere=L/R.=eBL/Ack IIl. BOGOMOLNY'S QUASICLASSICAL SURFACE

=2l pokL. HereL is the length of the side of the square, OF SECTION METHOD

¢ is the magnetic fluxBL?, and ¢, is the flux quantum Our approach11] utilizes the quasiclassical surface of

hc/e. Small e allows us to approximate orbits within the gection[SS) method of Bogomolny12]. Poincarés surface
square as straight lines, to first approximation. This is SOMegt section is a surface in classical phase space through which
times known as the Aharonov-Bohm regirfi@}, since the g interesting orbits repeatedly pass. For two-dimensional
leading quantum effects come from the phase interferencgsiems, the surface of section is a two-dimensional phase
effects associated with the vector potential, and do not degpace. For a billiard, the Birkhoff surface of section is often
pend on the change of classical orbital motion caused by thgnggen. Namely, the space part of the surface of section rep-
Lorentz force. Many potential experiments are in this param;esents a point on the boundary at which the orbit bounces
eter range. _ _ _ ~_and is usually measured by the distance along the boundary
We choose units such that the dimensionless field is o the pilliard. The variable conjugate to this is the compo-
=2m¢l ¢y, i.e., 2m times the number of flux quanta in the npent of momentum parallel to the boundary at the moment of
square. We také, 7, and 2n to be unity so that contact. However, many possible surfaces of section can be
. considered, and some are more convenient than others.
e=B/k<1. (1) Bogolmony’s method is a generalization of the “bound-
ary integral method”[12,13], applicable for billiards, and
based on Birkhoff's surface of section, to much more general
systems and surfaces of section. The boundary integral
method introduces an operatén(x,x’,E) and an integral
k>1, 2) equationy(x) = [dx'K(x,x";E) /(x"). This exact equation
has nontrivial solutions only whel is on the spectrum. The
which is the basis for the quasiclassical approximation. ~ SS wave function)(x) is the normal derivative of the full
We shall see that the condition for standard quantum pemwave functiong(x)=dW¥(r)/dn whenr is at the boundary

The dimensionless wave numblelis the number of wave-
lengths in a side of the square, up to a factor of. 4t
satisfies

turbation theory to work is pointx. We should mention that only recently has the bound-
ary integral method been extended to uniform magnetic
kye<1, (3) fields in the case that is of order unity[13].

Bogolmony’s operatoil (x,x’;E) is basically the quasi-
or, in other wordsykB<1. This is not completely obvious, classical approximation tk. It thus takes the particle cross-
and in other context9], it has been guessed incorrectly that ing the SS at positior’ to its next crossing at positiox all
the quantum “perturbation border” ike<1, i.e., B<1, at energyE=k? The quasiclassical approximation to the
which has the simple meaning that the number of flux quantapectrum is determined by the existence of solution$ f
in the square is small. We, however, find that nothing much= . If only the spectrum is of interest, as it has been for
changes at the bord&~1. many authors, the condition may be expressed afldet

There may also be a “high energy” condition in the form —T(E)]=0.
of a requirement thate®< 1. The exponert depends on the The operatofT is given quite generally by
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N — _v’\2 ’
et i /' " S(x,x") =ky4+(x—x")2+ D (x,x"), (6)

i.e., the flux free result plu® =(e/c) [A-dr, where the in-
R, tegral is done along the straight-line path.

Our schemé11] finds solutions ofT y= ¢ by a perturba-
/ tion theory. Taking advantage of the fact thas unitary, we

N/

N / X
y=-12 \> f X TOGX ) (x") = e Cy(x), ™

’

X X

y=12

FIG. 1. A channel of X2 squares replacing the originakll  treatingk= JE as a parameter, and then find the energies by
square. A_dJacent squares are _reflected a_nd the magnetic flwolving w(k)=2n. Given ¢(x), a quadrature that can be
changes sign. An orbit in the original square is replaced by a nearlgarried out quasiclassically, yields the full wave function

straight-line orbit in the channel. The orbit curvature of radiys  (x,y). Details are given in Appendix A.
due to the Lorentz force is exaggerated for clarity in the figure. The

orbit shown goes from' to x+ 2 in the channel representation and

is close to a (1,1) periodic orbit. It is paramagnetic, since the re- IV. RESONANCES
flections from the square sides cause it to circulate in the opposite
direction from a free orbit in the field. Classical and quantum perturbation expansions in powers
of e fail near resonances, necessitating modifications that
1 [%S(x,x":E) 12 introduce \e. Classical resonances correspond to periodic
T(x,x";E)= i | T e exgdiS(x,x";E)], orbits of the unperturbed system. Periodic orbits on the
m OXIX square correspond to straight-line orbits in the channel from

4 (x',—3) to (x=x"+2plq, 2). Hereq is a positive integer
andp is a positive or negative integer relatively primedo
Negative and positive are not equivalent if there is a mag-
netic flux. Between resonances, or near resonances with large

gﬁand g, ordinary perturbation theory works. See Rff1]

®tor a fuller discussion.

We now specialize to thex{1,1) resonances. These are
the simplest resonances depending strongly on the field and,

: . , as we shall see, in some sense dominate the magnetic re-
The classical actio®(x,x") generates theurface of sec- sponse

tion map Namely, the momenta conjugatexox’ are given We look for a solution of Eq(7) of the form ()

by =e'**u,,(x) wherex=k cos 45%=k/+/2 andu,, varies much
dS(X,X") IS(x,x")
p=— - :

more slowly than the exponential. The reason for this choice
(5) is that the phase factet** makes the rapidly varying phases
IX ax’ in the integralfdx' T to be stationary ak’=x—2. This
corresponds to rectangular shaped periodic orbits of the
Equation (5) implicitly gives the surface of section map qriginal square whose sides make angles of 45° withxthe
{p.x}=M{p".x'}. axis. Such orbits are shown in Fig. 1.
We attempt to simplifyT by astute choice of the surface  Because is small, the phas® does not greatly influence
of section. It seems simpler to use just one side of the squargye position of the stationary phase and it suffi¢e$] to
rather than all four sides. It is even easier to use a method f@‘valuate(b(x,x’) at d(x,x—2)=®(x+2x). [The accuracy
Images. Namelly,l we consider, instead of a unit squaye  of this approximation depends on the smoothnes® pand
e[—3z,z2]®[—3,z], aninfinite channel of width 2 obtained fajjyre of the approximation is related to the onset of diffrac-
by reflecting the original square first abaut-; and then  {ion effects mentioned earlidr® (x+2x) is obtained by in-
abouty=3, and finally repeating the resulting<2 square tegrating the vector potential about the closed rectangular

periodically tox= * . The flux changes sign in neighboring |oop, and somewhat remarkably is independent of gauge.

squares. This geometry is shown in Fig. 1. There are a conrhe resulff11] is thatu,, satisfies the Schdinger equation
tinuum of channel solutions. The solutions to the original

square are a subset of these, which exist only at certain quan-
tized energies. This quantization can be carried out in several —upr+V(X)Upn=EmnUpn, (8)
ways, one of which is shown below.

The SS is taken as the axjs=—3, which is identified
with y=3. Because the field is classically weak, the pathwhereV(x)=—k®(x+2x)/L and £=1/8 is the length of
used to calculate the action is approximated by a straighthe periodic orbits. Thus we convert the phasdo a “po-
line. We immediately find tential” V. The transverse energy [k enters into the total

WhereS=f§,p'dr is the action integral along the classical
path fromx’ to x. Note that, rather than giving position and
momentum on the SS, positions at two sequential crossin
of the SS are given. It is assumed, for notational conv
nience, that there is a unique orbit froxi to x. We also
suppress the Maslov phase. Note thats semiclassically
unitary.
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energy of the eigenstate, according to Ep) below, andm VI. UNIFORM FIELD SOLUTION

is one of two quantum numbers classifying the states. A. Effective potential

For the uniform field, the potential is
V. TRANSVERSE POTENTIAL AND PERIODIC ORBITS
V(X)=-Bk(3—2x*)/L; xe[—3.3],
For a given resonance and surface of section, there is an

effective potentiaV that determines the functions, and the V(x)=+BK3—-2(x+1)%]/L; xe[—3,—3], (9
energyE,,. The resonance classically corresponds to a con-
tinuous set of nonisolated periodic orbits of the integrable V(X)=V(x+2).

problem. Before perturbation, each of these orbits has the L — o
same action. The potential, to leading order, is propor- The factor; —2x° is simply the area enclosed by a periodic

tional to the change of the action under perturbation, calcu(l:1) resonant orbit in the shape of a rectangle that bounces

lated along the unperturbed path. Each such path is labeldfP™ the bottom of the square at In Appendix B we give

by the parametex, where it crosses the surface of section. eT?l?srre:ﬁggiiln%t%%tt?gltlc?cl)rﬁgirs?sthoirarI?eSr%r;%ﬂces.ositive and
Higher order corrections may also be fourid]. P P gp

Knowledge of the potential gives much qualitative insightm:“g"’ltlve harmonic potential wells of depBi/2L. At the

into the problem. Its minimaif smootH, are at stable peri- boundariesx= =+ 3, the second derivative of the potential is
) P ’ ’ S P discontinuous, a fact which leads to the mentioned diffrac-
odic orbits, as a rule, and its maxima are at the unstabl

bits. In that i i lassical island chai fon effects at sufficiently largB2/k.
orbis. In that sense, 1t represents a classical 1siand chain. For the (~1,1) resonance, whose orbits are time reversed

course, it was known how to quantize states near the stabh 1) orbits,V(x) changes sign. This would not be truevif
periodic orbits, if & harmonic expansion is allowed. HOW- 44 'its origin in a time-reversal invariant perturbation of the
ever, the states that can be found with the ai¥@fre much  gqyare, for example, a small change of shape. We can in-
more general and in particular the states with energigs clude the (- 1,1) resonance in the present scheme by attrib-
near or even above the maxima of the potential can also bgting the region 1/2 x<3/2 to that resonance. This exten-
found. sion of thex coordinate is thus similar to use of an “angle”

In general, isolated unstable periodic orbits do not supporyariable, with positivex velocity v, for xe[—3,%], and
wave functions, but rather “scar” thefi4]. In other words, negativev, for xe[%,2]

X ’ .

there appears some excess weight on the Waye funct.ion near ¢ JBk=k\/e is small, the potential/(x) can be treated
the unstable orbit. In the sense of Feynman's path-integrale  hatively. On the other hand, for sufficiently large
formulation, '_[here are not enough classical pa_ths near theBk//j, Eq. (8) will have low-lying tight-binding harmonic-
unstable orbit, to build a complete wave fun_ctlo_n. He_re_”eabscillator type solutions centered rt=0, (if B>0), with
means that the paths are close to the periodic orbit in th@nergies approximately given by
sense of being well approximated by a quadratic expansion
about the periodic orbit. En=—3Bk/ L+ (m+%)V8BK/L. (10
The same is true in the present case, and wave functions
cannot be built just from orbits near an unstable periodicThis formula holds fom< yBk/L. The lowest wave func-
orbit. However, because of the small parametewe can tion is approximatel)uo(x)=e”‘mx2, which is arbitrarily
approximate well an entire shell of orbits in the Feynmannarrow at large energy. These states pagamagnetic as
integral, and express the result in terms of the potekfifa).  follows from the fact thatkE,,/dB<<0. This will be seen
This shellcan support many states that we find. Themre  more clearly below.
states whose energies are near the maxim¥ ad thus Equation(8) is valid for largerm. Although very simple
have extra weight near the unstable periodic orbits. analytic answers are not available, the problem is the well-
The interpretation ofi, is that it gives the structure of the known one of a particle in a one-dimensional periodic poten-
wave function “transverse” to the resonant periodic orbits.tial. We shall see below that we need only consider the
Along the periodic orbits, the wave function varies rapidly, boundary conditions(x+2)= £ u(x). This simplification is
but transversely, it varies relatively slowly. The “longitudi- a consequence of the symmetry of the square, and something
nal” and transverse motions are weakly coupled, because slightly more complicated would be needed for the rectangle.
and thusu,, andE,, depend ork, but this is easy to take into The solutions to Eq(8) may be put into four classes,
account. A, B, C, andD. ClassA states are those with “low” ener-
The concept of transverse is a little murky in the quantumgies near the bottom of the well,,~—3Bk/L. For these
case, although there are cases, including the one under studgsesu(x) has support only neax=0,+2,£4,... These
where it can be made more precise. We shall not dwell ofocalized states are strongly paramagnetic, that is, the current
this further in this paper, however. circulates in the opposite direction from that of the particle in
We also remark that the Sclinger equatiori8) requires  free space. In this castE,,,/dB<0. (We shall see that the
boundary conditions, in order to pick out the physically in-transverse energl,, carries nearly all the field dependence
teresting solutions. These boundary conditions come fronof the total energy of the corresponding two dimensional
the properties imposed on the solution by the physics of theigenstates.
problem, and are usually simplified by symmetries of the ClassD states have energies much greater than the maxi-
problem. mum potential energy, i.eE,,>3BKk/ L. In this case, the
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magnetic field is a small perturbation, since the “potentialu,(—x)=—i"3"e~'*u,(x). The reflection symmetry/(x)
energy” V(x) in Eq. (8) is small compared with the “kinetic =V(—x) allows us to takei,(X)=(—21)"uy,(—x). In turn,
energy” given byu”. These states are weakly diamagnetic.this allows quantization ok in the form «=n/2, wheren
We shall not consider further this case. Of course, the apis an integer satisfying certain conditions depending and
proximation of expanding about the (1,1) resonance eventum. Similarly the two terms proportional to~'** in Eq. (12)
ally breaks down, and higher-order resonances are eventualijive the conditiore'?=(—1)". The relationship ofito r and

involved[11]. m is
ClassC has total transverse energy near the top of the
potential V(= 1), that is, E,,~3Bk/L and the states are nmod 4=[2(1—mmod 2+r]mod 4. (13

strongly affected by the magnetic field. Very crudely, they

are somewhat localized or “scarred” near=*1, since It is straightforward to find for the eigen wave number
they spend more time in that region. This means that they are

strongly influenced by the<{1,1) resonance. They are dia- Knm=2mn/L+Eq/k. (14
magnetic andlE,,/dB>0.

States of clas$3 form a transition region between the Equation(14) should be solved iteratively. For example, the
low-energy paramagnetic states, and the higher-energy difirst approximation replaces the dependence of the term
magnetic ones, i.e., ne&,,~0. These are states strongly E, /k by 27n/L. Equivalently, the energy
affected by the field, but are such tréiE,,/dB~0.

Enm=4m2n?/L2+2E,,. (15)
B. Quantization
Eote thatE,, depends, relatively weakly, am since thek in
g. (10) should be replaced byn/L. The dependence of
the total energy oB comes through the teri,,. Equations
(14) and(15) hold for all symmetries and successive values

There are two states with identical energy in the repeate
square scheme. These arg=€e"*un(x) and
=e "*u,(x—1). [Changing the sign ok is equivalent to

changing the sign of the field, which in tum can be accom of n at fixedm cycle through the representations7®f Note

plished by replacing/(x) by V(x-+1).] . . o .
Rather than finding the eigenvalues by imposing condi-that’ sinceEn/k<k, the wavelength is given approximately

tions directly on the/'s, as in Appendix A, we produce the Eynft/)gr g?" ;hgléin%;hs of the classical orbits is an integer
four two-dimensional solutionsV corresponding toy, | . u wav gtns.

. s . Thus we have an expression for the energies of a class of
Each ¢(x) gives twoW¥(x,y)’s becausey and 1-y in the
gtrip rle//[()rgsgeant the sange )Qoint in theworiginal gql;la‘"! states, namely, the(1,1) resonant states. They are labeled

show elsewherd8] that these states can also be found di_by integem that effectively gives the number of wavelengths

rectly by a Born-Oppenheimer approximation. One of theséneasured along the (1,1) periodic ‘?rb|ts, ,",’uld by a s_econd
states may be written integerm that gives the number of “nodes” “perpendicu-

lar” to this orbit. The very lowm states could very well have

Wo(x,y)=e* Wy (x—y—1). (11)  been found by earlier methods, since they can be obtained by
expansions about the stable periodic orbits. However, these

The remaining three states, 1, 2, and 3, can be obtained Bgmarkable states do not seem to have been noticed hereto-

rotations, e.g.¥,(x,y) = RW¥y(x,y) = ¥o(y, —X), etc. Here ~ fore.

R:(x,y)—(y,—X) is the rotation by 90°. The gauge can be

chosen so that the Hamiltonian is invariant un@erThere- C. Orbital magnetism

fore, the symmetry of an eigenstate can be labeled by

=0, 1, 2, and 3, where the eigenvalueRfisi '.

Thus, an eigenfunction with symmetryis given by

The (1,1) states just obtained dominate the magnetic or-
bital susceptibility in a parameter range appropriate to ex-
perimentg 3]. The susceptibility for the square is on a scale

3 1 rather larger than the Landau diamagnetism. It is of course

_ 1SS | @l k(X+Y) - not necessary to find the states, or for that matter, their en-
Vo) (SZOI R )e um(x y 2)' (12 ergies, to calculate the susceptibility. That is because the
susceptibility depends only on the density-of-states

[The sequence of rapidly varying phase factors issmoothed over an energy width proportional to the tempera-
{e!<OtY) glk(=xty) gmin(xty) lkX=Y\ " These in turn are ture. The Gutzwiller or better, the perturbed Berry-Tabor
rapidly varying in the 45° directions of the sides of the pe-trace formulg4], is designed to give exactly that quantity in
riodic orbits] In general, a solution of Eq8) satisfies the quasiclassical approximation. Nevertheless, it's interesting
boundary conditioru,(x+2)=e'Pu,(x). We need to find and previously unremarked, that a small subset of states ac-
the allowed values foB and « that will give the quantized counts for most of the magnetism.
energies. These conditions are obtained by requiring We start by finding the orbital susceptibiligyof a system
W 1y(x,— 3) to vanish, corresponding to Dirichlet conditions of noninteracting electrons in a grand canonical ensemble.
in the original problem. If the wave function vanishes on theThis is given byy=dJM/JB where the magnetizatiof
bottom, it will by symmetry vanish on the boundary of the =—dQ(T,u,B)/dB. Here the grand potential is
square.

Clearly, the sum of the two tern{ss:(_J,S] in Ea. (12_) (T, 1,B)=—kgTD, In[1+e Ea-w/keT] (16)
which are proportional t@*'** must vanish. This implies a
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The temperature ig, kg is Boltzmann’s constant, angd 1.0[ ' ' '
=k§ is the chemical potential. The dependence(lobn B I
comes only because the eigenenerdiggiepend orB. The :
sum is overall eigenstates labeled tay 0.57
We divide the states into those relatively few whose
energies depend appreciably on the field and the rest. Thes .
field dependent states are exactly the (1,1) states foun™ 90T
above, plus possibly states classically associated with a feve
other low resonances, e.g., (1,3). The reason for this is tha |
the (1,1) states enclose the maximum directed area. The  —0.5[ b
also have the shortest length which we will see plays a .
role. The even shorter (0,1) periodic orbits do not enclose I
any flux in the approximation of neglecting the curvature of -1.0 : : :
the orbits although at higher fields they eventually become -1 0 ! 2 3
important.
Thus, we replac&,=2,+=, , and we can neglect the g 2 4E, /5B vs E,/B. Stars are form=0,2, .. .Myu
sumb over field independent states. The second sum, oveL14 . andn=62, B=25. The continuous curve is E€O) of
(1,1) resonance states, has many fewer terms than the first jRe text.
a given range of energy. Singeis related to the number of

particles, it is nearly independent Bf It is possible to find  gscillations of the sine, the result is much reduced and it is
w=kZ+ 5u(B) and make a consistent expansion, and that iecessary to go to higher order d.

indeed necessary if an average over a large number of In Fig. 2 we showdE,,/dB as a function oE,,/8 for the

squares with canonical statistics is dddd. However, we A .
just want to illustrate how the (1,1) states dominate the sus(—l’l) resonant states, wheig=Bk/2L. According to Eqg.

ceptibility, and we will not consider this further average. (18), if the sign of 9E,,/dB is negative the contribution of
Then, we may approximate the Correspondlng state Is paramagnetlc. For an exact, two-

dimensional wave functionW, ., with energyE, ,, it is
known thatdE, /dB=—(L/K) [d?r[rXj(x,y)],, i.e., the
n,m n,m v
M(T,p,B)= _nEm "B folEnm(B)] 17) expectation value of the component of the magnetization
' density. Here the current is

andfp is the Fermi-Dirac distribution function.
Using the Poisson-sum formula, replace the summan ; _ *
Eg. (17) by an integral ovek, and do the integral to obtain J(xy)=2 Re¥*(x,y)

1
i—V —A(x,y)) T(x,y). (19

kgT i ,SL In our approximation, according to Eq15) above,
M=- Ke o amk exp — 2Kke IE, m/ B is equal to 2E,,,/9B. It follows from Egs.(8) and

. (9) above, thataAEm/a§=(\A/(x))mz(um|\A/(x)|Aum>, where
/;s(kF_k_m”_ (18 V=VIB. Since V<0 for xe[—3,3], and V>0 for x
F e[3,2], etc., we see that the sign of the magnetic response

Here, o, = m(2r +1)kgT is the Matsubara frequency and Of @ given wave function depends on which region\of
am=JEn/JB. (We have dropped the “leading” term in the dominates the expectation value. Of course, the classical pe-
Poisson formula that totally neglects the discrete quanturiiodic orbits in these two regions have the expected sense.
nature of the states and which therefore cannot produce a Finally, we may expressE,/JB quasiclassically as
magnetizatior).As an examplg3,4], takekgT ten times the

level spacing of all levels, i.ekgT= 20 in our units. Then, . A @2

woL/2~300. If ke~300-600, so that the square contains JE, f dxV(X)[E—-V(x)]

about 2-6<10* electrons, the exponential suppression will
not be too serious far=0, s=1. However, larger or s do
not contribute muchl.In the trace formula approach gives
the number of repetitions of the primitive periodic orbit and . A
the sum over is explicitly carried ouf Here E=E,,/B can be treated as a continuous variable, so

Equation(18) shows that states with largé€r i.e., smaller  thatgE /9B as a function of falls on a continuous curve

spacing, are suppre;sed, ex_actly as seen from the trace f%'at in this approximation is independenti®f The integrals
mula in terms of periodic orbits. It also shows that relatively . ) - . ~

large field dependence of the levals,, is important. For the '€ Petween the turning points. ABmear the minimuny p,
square, the (1,1) states have the smallésand also the ©Of V. dEn/9B~Vp,. For E at the maximum oV, the in-
largesta,,. The (2,1) resonance does not couple to a smaltegrals diverge ax=1, thus makingyE,,/dB positive, and
constant field. It is also seen that if E48) is averaged over also giving the cusp in Fig. 2. Of course, our simple quasi-
many squares of somewhat different sizes, because of thdassical approximation needs corrections in this case.

X sin

o (20
B f dX[E—V(x)]~ @2
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The quantization of the transverse motion relates
=E,,/B andm according to the standard formula

J dX\/E—V(x)=w<m+% /\B. (2D

P (x,y)I?

The spacing of the quantum states therefore depend%. on
The level my, such thatEmmp%V(l) satisfies, approxi-

mately mmp%O.G\/E. The states withk=142 andB=25
were chosen in part because with these parameters there is a
state very near the diamagnetic maximumpz 14, and an- FIG. 3. A three-dimensional view of the absolute value squared

other state witrm= 10 for whichdE, /4B is very small. On  ©f localized paramagnetic state for-62, B=31.4, andn=0. The

the other hand, with these parameters, while our approximat%Ut near the side of the square is proportionaligowhich is close

states are ver ' ood for smatl, the tran,sverse momenta are to a Gaussian. Near the side there are interference oscillations from
. Y9 . oo two main terms in Eq(12).

becoming large enougtas compared with the longitudinal

momenta that our approximation deteriorates significantly at (L/2)nmiy L — (UDnaiy

m= 10, especially in regions of the square where the wave Y(xy)~le Ug(x—y—3)+e Uo(—Xx—y

function is small.
—3)|=[2ug(x)cosnmry| (22)

D. Visual representations of eigenstates so that| W (0,— 3 + 1/n)| at its first maximum near (6,3) is

Eigenstates of Hamiltonians not satisfying time-reversapbout twice as large asV(z,—z)|. [Note thatn mod 4
invariance are rarely shown graphically in the literature, ex-=2.] The current density is thus largest close to the middle
cept for trivial cases. In the invariant case, numerically pro-of the square edges and it is of course nearly parallel to the
duced picture galleries of eigenstates for systems such as tleelge there. In this case, the shapelotlose to an edge is
Bunimovich stadiunj15], have led to a great deal of interest given byu,,(x), as can be seen in Fig. 3.
and insight, both theoreticdl4] and experimentdl16]. Figure 4 shows the streamlines of the current in this state.

“Magnetic” states are not real but are inherently com- The direction of the streamline gives the direction of the
plex. A complete graphical picture of a complex state wouldcurrent flow, while the density of streamlines is proportional
seem to require twice the number of pictures as that necese the magnitude of the current density. That is, between any
sary for a real state satisfying time-reversal invariance. Intwo neighboring streamlines, the same total current flows.
addition, the states themselves are gauge dependent, ambe state in Fig. 4 iparamagneticthat is, the current cir-
only gauge-invariant quantities are physically meaningful. culates in the opposite sense from that of a free patrticle in the

A difference of the magnetic case as compared with thdield. The choice of which streamline to display is easily
time-reversal invariant case is that generallyor j do not  obtained in this case, since each line crosses a symmetry line
vanish along nodal lines, but rather only at isolated nodalike x=0, ye[— 3,0], once and only once. The current has
points. There may of course be symmetries or boundary corbut one interior zero, at the center of the square.
ditions requiring these quantities to vanish along a line, but Figure 5 shows the state=60, B=31.4, andm=1,
in general the representation of wave functions by their nodalvhich has one “transverse node.” This node does not give
patterng 15] is not available in the absence of time-reversal
invariance. 0.00

Two gauge-invariant quantities we choose to display are
the absolute value squared of the wave functidr(x,y)|?
and the current density. The current density is a two dimen-
sional vector field that is divergence fr& j=0. The one-
dimensional surface of section states are also of interest.

We first show a picture of a clags state, which is quite
simple to represent. Figure 3 show¥ (x,y)|? for n=62,
k~2mw62/L~140,B=31.4, {Bk~66, andm=0, which im-
plies the symmetry=0. For such a well-localized,,, each
term in Eqg.(12) dominates one side of the rectangular peri-
odic orbit. For example, near= —y=7%, only the first term N
s=0, in the sum (12) is appreciable. In this region N
W(x,y)|= up(x—y—3) which is well approximated by a 0.50 ' : =
|Ga(usgi)a|n. o(X=y~2) PP y 04 0.0 04

There is interference near the square edaeg., near y
(0,—3)], and two terms contribute appreciably. Near this FIG. 4. Streamlines of the current of the state shown in Fig. 3.
point then The interference peaks neas=0 are apparent.

»~ 025
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FIG. 5. The state witm=60, B=31.4, andm=1. Counter- FIG. 6. The statemn=14, n=62, B=25 of maximum diamag-
clockwise from lower left, a density plot df'|?, current stream-  netism, as found numerically. The same representations as Fig. 5.
lines, a density plot ofj|, and a dot-stick representation of the
current.[The dot is at the calculated point, the size and direction ofespecially in those parts of the square where destructive in-
the stick represent the current density magnitude and diretibe.  terference is important and the final wave function is small.
functionu,(x) has a node at=0. This appears as a narrow valley Nevertheless, Eq12) is a quite good representation of the
in the center of the ridge of current, although there is no node ofngre accurate numerical results.
nodal line there. The numerical result is shown, which is very well In Fig. 8 we show the state= 10, for whichJE /B is
represented by theory. very small. The streamlines of this state are rather striking.
. L _ Note that there are large current loops that have opposite
rise to a nodal line in Fhe _total wave fu_nct|on, of Cours.e’magnetic polarity. Again, the approximate wave function
although the wave function is small In regions corresponqu:aptures many features of the exact one, although it does not
to the nO(_:ie. The states hav_e rqtatlonal symmetry, and WFEproduce the finer details. In this case we show also, in Fig.
show a different representation in each corner of the unlb, the transverse statg,(x) and the normal derivative of

square. W :
_ 62,10 0N the surface of section. Although for smai| the
One remarkable feature of these staes;0,1 is thatthey  p,ina) gerivative on the surface of section bears an under-

are localized very near the central paramagnetic diamon tandable relation tai.,, it is quite complicated for trans-
orbit. Theoretically, for largeBk this localization can be as verse energies this IaTée.

tight as one pleases. Although this is a result of our theory, Finally, in Fig. 10 we show streamlines for the sequence
which uses a “potential” functio’V(x), it is clear thatvV(x) of states’ m=6,8,10,12. Although there are systematic
is really something that arises from Aharonov-Bohm phaset'i,hanges of pat,te,rn,’we' have not tried to rationalize these

and thus does not have a corresponding classical effect. | ;
deed, we find the same kind of effect in the AB qux-Iine%hangeS' We conclude that even though the wave function of

case, for larg&8k and smallB. In that case it is obvious that

the localization cannot be a classical effect. This localization RN o7 S r—
is thus like Anderson localizatiofl7] in the sense that, ab- LlLIIgTILLIiiti

sent phase interference, localization would not exist. Of R T e

course, the random disorder aspects of Anderson localization il et

are not present. It is also true that rather similar states local- 2
ized near stable periodic orbits are often found, but then the H
classical and quantum localization are related. B
The next figures, Figs. 6—11, hame=62 andB=25. Fig- 2_
ures 6 and 7 show a state of claSscorresponding tan ! ]
ol

e

.
=14 which is energetically at the top of the periodic poten- ‘o u
tial corresponding to the<1,1) resonance. This state is dia- e d ot
magnetic with the current circulating in the opposite sense e ’:f),,:t
from the states wittm=0,1. The theoretical and numerical 3 et tree
wave functions are shown. RS 17T 1L
The theoretical predictions in this case are considerably ’ T

less good than for the states with smail First, the trans-
verse wave number is no longer quite so small compared
with the wave number along the path. Second, since accord- FIG. 7. The same state as Fig. 6, as predicted by our approxi-
ing to Eq.(12), as many as four approximately found com- mation. Form this large, the theory does relatively poorly, but
ponent states are added, there may be relatively large erronssvertheless is qualitatively correct.
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FIG. 8. The statem=10, n=62, andB= 25 of nearly canceling FIG. 10. Streamlines for a sequence of states;6,8,10,12,n
para- and diamagnetism. Numerical results are shown as before;62, andB=25 counterclockwise from the lower right.
except for the upper left corner where the theoretical streamlines are

shown. Theory and numericals differ primarily in the low current y . ¢ |argem all four terms in Eq(12) make comparable
regions. Notice there is a diamagnetic current loop encircling the ntributions at an arbitrary typical poirty, wher in th
diagonals and canceling paramagnetic loops in the triangul 0 i udo sata Ia aytyp Cta po y’t 'betea'srh' €
wedges between the diagonals. localized case, only one or two terms (1:on ribute. This gives
interference oscillations ihy,,| near|x|~ 3 as shown in Fig.

Eq. (12) is fairly simple, it is difficult to foresee interference
patterns when four terms are important.

These relatively complicated states are harder to represent E. Momentum localization
adequately. In both theory and numerics ¥he =0 charac- .
ter ?)f theycurrent is no'i/ exact. Numeric:fly following a We have aSSl,Jm_ed thae-m, and thatiy, is SlO\Ale vary-
streamline, particularly in the neighborhood of a zero of thed"g compared _W'tre' ™2, We may expandlm:_ZumJe' ™,
current, is difficult. We therefore imposed the divergenceVherel is an integer for even and half-odd integer far

free character by representip,y) =V X zx(x,y). We cal- ~ 0dd. AlSO Uy, =(—1)"Ur, ;. The unperturbed states
culated y as a symmetrized integral gf, wherej, was [S_IHWP(X+§)SIH7Tq(y+ 5)]_ can be Iabeled_ by integens,q
obtained either numerically or theoretically. The streamlinegVith unperturbed energiept+q°), dropping a factorr?.
are then contour lines of. Equation (12) is a superposition of unperturbed states
The diamagnetic states are not so spatially localized as th&ith quan_tun; nugnb?rsgw %n; I, g=3n—1. In particular,
low m states, although they continue to have a sort of |oca|11he2energle$) +0°=3zn"+2|° are closer to the base energy
ization in “momentum” space, as we show below. More zN° than to the base energy of the next representatjon
generally, asm increases, the states become more delocal=3N"°+n. Of course, if the perturbation is symmetric under
ized, and eventually become independenBofThis means rotation, the next base energies coupled gre;~ e,*4n.

45

35

AANN m e
v VY sl g b

FIG. 9. The upper figure shows, fan=10, n=62, andB=25 :i.ZAiiii;iiiiiiiii;Iiii,Tifi

the normal derivativeldW g, 10/dy|,~ -1, obtained numerically. 1515 25 35 45

The lower figure isu,o(x). Becauseuo(X) extends significantly p

outside the domaifi— 3,31, and is “folded” back into that domain

with a rapidly varying additional phase factor to constradt/ on, FIG. 11. The decomposition of the state of Fig. 6 in Be0

these two constructs are not so intuitively related as for lomer basis states. These are sip(x+ %)sin mq(y+ %) symmetrized and
states, which are more localized. normalized.



PRE 62 SQUARE BILLIARD WITH A MAGNETIC FLUX 2055

There are, however, other unperturbed states pith The results depend on where the flux line is located. We
+g%~e¢,. For example, 7+ 49 = €,,. However, the matrix consider first the case that it is locatedxat0, y=—3+a,
elements of a smoothly perturbed Hamiltonidty,q ,q» i where O<a<3. Again, we consider states related to the
the unperturbed basis, are small|gf—p’| or |[g—q’| is (1,1 resonance. This leads as before to B).but now we
large. Because the perturbation due to a uniform field has ind a potential
singular third derivative, these perturbations drop off as a

power law, and this relatively long-range effect in momen- Vas(X)=—BK L;xe[—a,a],
tum space is the source of the diffraction corrections.
In Fig. 11 we show the magnitude of the amplitudes of the Vap(X)=+BK L;xe[—1—a,—1+a], (24
unperturbed states combining to make the state62, B
=25, andm=14. The area of a circle is proportional to the Vap(X)=0;x¢[—a,a]Ju[—1—a,—1+a]

square of the amplitude. Above the main diagonal we show
the theoretical result. All amplitudes lie on the line-34, for points in[—2,3], andV,g is extended periodically by
31+1. Below, we show the result for the numerical wave Vg(Xx+2)=Vg(X). For the flux lineB=2m ¢/ ¢,.
function. The circlep?+qg?=2x31? is also shown. Our Actually, Eq.(24) is for the ideal flux line. The ideal case
theory is starting to need corrections forthis large. has step function jumps in the potential that are smoothed
Thus, an interpretation of our method that yields the (1,1)out at finite p. In other words, the sharp jump at=a, is
resonance states of E(.2) is that we effectively diagonalize replaced by a smooth rise beginningxata—p and ending
the Hamiltonian in a basis restricted to the unperturbed statest x=a+ p. The exact shape of the rise depends on the dis-
nearly “degenerate” withe, and close tgn,3n. This is the  tribution of flux in the line. As long as the transverse wave-
case for the uniform field, and indeed, we achieve agreemenéngths in the solution of Eq8) are long compared witp,
between full numerical diagonalization, diagonalization re-the finiteness ofp does not play a significant role in our
stricted to “degenerate” states, and the procedure using ththeory at this level of approximation.

solution of the differential equation E¢B). For the ideal, zero radius ABFL, there are significant de-
viations from this scenario. Indeed, most matrix elements of
VIl. AHARONOV-BOHM FLUX LINE the ABFL perturbed Hamiltonian in the unperturbed basis

) _ are infinite. However, it is a weak, logarithmic infinity, and
The above approach can be generalized to deal with nons, theory seems to capture the main shape of the wave

uniform flux configurations. To get the potentidassociated  f,nction, although at the relatively low energies for which
with the (1,1) resonance, all that is needed is to be able tq,merical results are available, there are significant correc-
calculate the flux contained within a (1,1) periodic orbit. Wejons we consider these to be diffractive corrections, arising
consider here the case of the Aharonov-Bohm flux lin€from a characteristic length shorter than the wavelength.
(ABFL). Some further results are published elsewtié. It is clear thatBk/ L is the important parameter in the UF

While much of the above discussion can be carried ovVeg,qe while for the ABFL. botlBk/ £ anda are important.
to the ABFL, in the ideal case of a zero radius line there argyq t;egin with the casa,= L which has a “square-well

strong diffraction effects that limit the applicability of our potential” of width 1 nearx:?)’. For sufficiently largeBk/ £
theory. We therefore begin by defining the alternative probspare will be “tight-binding” solutions approximately
lem of a finite-size flux line or tube. This is more realistic if Um(X) =cosfn+1)mx/2a, |x|<a, and zero elsewhere. This
1 m ’ ) .

actual experiments are contemplated. . expression holds for sufficiently small evemand for oddm

Let p give the linear scale of the flux tube. We may think i & osine is replaced by the sine. The eneggy= — BK/ L
of the flux as uniform inside a tube of this radius, or as being, 72(m+ 1)2/4a2 '
distributed in some way, say as a Gaussian, witliving the Figure 12 is for the ABFL case. with=86. m=0. r
scale of the distribution\We actually used a square tube of _g 7" "1 Figure 12 curvea shc;wsuo(x) and uo(’—x

’ 4+

side p. Even more accurately, we used four quarter strength. 1), its extension intx<— %, reflected. For these param-
tubes symmetrically located, which allows a symmetry re-

> . L eters,ug is not extremely localized, and extends significantly
duction in the numerics. In the approximation of our theory, 11
this gives essentially the same result as a single circular tub

éutside[—z,g]. The remaining plots givéy,,|=|s¥/dn|.
The field inside a single flux tube By— ¢/4p? and g is the T, 9ure 12 curved plots Eq.(12) and Fig. 12 curvel is from
total flux.) The typical angular deflection suffered by a clas-

diagonalization in the limited basis of the “degenerate”

X . : R states. Clearly, these two approximations are nearly the
sical particle traversing this field is same. Figure 12 curvesandd are obtained by numerical
diagonalization in the complete unperturbed basis, for the

80~ (bl do)lKp. (23) finite-size flux tube and the ideal flux line, respectively.

Clearly, for these parameters, there is significant diffraction

from the flux tube. It is somewhat less than for the zero
To avoid diffraction we requirésé to be small. This can be radius line but the two patterns have some resemblance. Dif-
achieved, of course, Kp is large, but that is not necessary. fraction evidently modifies the interference between different

In the numerical work shown, we také/¢,=0.1, andp parts of the wave function in an irregular way. The overall
=0.01, whilek=140. An alternative and equivalent condi- shape of 9¥/dn| is well predicted by the theoretical,. To
tion is to insist that, on the appropriately defined avef@je give a sense of the irregularity of diffraction effects on the
the terms in the Hamiltonian satisfy((eA/c)?/2m) wave function, we show in Fig. 12 cunfethe function for
<(ep-A/mc). n=70, a somewhat lower energy. In this case, according to
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squarg7]. Again,m=0, r =0, andn=_82. The upper part of
the figure shows numerical streamlines for a corner of the
square. Although the state is spatially not well localized, it
does have a strongly “paramagnetic” current structure. By
paramagnetic we meatk,,,/d¢$<0.

The lower part shows the theoretical current denijtx)
for y=0xe[—3,0], that is, the current density along the
upper edge of the upper figure. A simple approximate for-
mula for j, is jy(X)o —(cosnmx/2)?[ Upm(—X—3)%— Up(X
—1)2] which gives double zeroes of the current at equally
spacedx=(2l+1)/n. In this casej, is negative and the
factor depending om,, has no zeroes except at0, for
m=0.

The maxima are af,=0; j,<0. Theory and numerics
closely agree on the period and shape of the oscillations, but
the lower envelope of the two differ. We mark with horizon-
FIG. 12. ABFL casea=3%, $=0.1¢,, p=0.01, n=86, and @l bars the lower envelope of the numerical calculation,

m=0. (a) Upper curve,uy(x), lower curve,u(—1—x). This is  Which is considerably more irregular than given by our

=112 0 172
X

repeated in the other pictures. The remaining plots atesfan|.  theory. This structure of zeroes pf is a consequence of a
(b) is the theoretical result from E@12), (d) is from diagonaliza- ~Symmetry, namelyy« —y, together with complex conjuga-
tion in the “degenerate” basis of Section (), and(c) is from full tion. This means tha¥ (x,0) is real and therefore generically

numerical diagonalization. The interference oscillations scale asvill have zeroes as a function af
u(—1-x). (e) and (f) are numerical results for the ideal single

ABFL (p=0), with n=82, andn=70. The additional detailed VIIl. SUMMARY
structure is attributed to diffraction, but the overall scale is given
well by our theory. A. Extensions of the results

We have shown how to classify and find eigenstates of a
arged particle in a square billiard subjected to a magnetic
X that is classically weak. It is not necessarily weak quan-

theory, theu, is essentially the same, and the interferenceCh
fringes have a somewhat longer wavelength, on the averagg,

The diffractive effects are quite different in detalil, however.ta”y’ however, and large remarkable changes in the wave

It is clear from this result that the ABFL localizes the functions are found which sometimes significantly localize

ﬁart|lg:|e, and to d(t) S?' It must offcour;e exert alflorc:a.b'll'.hﬁt 3‘;6 wave function. We used two basic flux configurations: a
uxfline can exert a transverse force IS now well €stabliSNeq izorm field and an Aharonov-Bohm flux line. The place-

[19]. . g ment of the ABFL is important. Of lesser importance is any

In Fig. 13 we show currents from a state wiks 3, i.€., finite radius to the line, at least in the range of parameters we
the much studied case with the flux line at the center of th%se. We exhibited some of the wave functions in several
forms and sequences, concentrating on wave functions con-
nected with the (1,1) resonance, that is, connected with pe-
riodic orbits of the flux free square whose velocities make
angles of 45° with the coordinate axes.

These results can be readily generalized to higher-order
resonances. For a given energy the effects diminish quite
rapidly as the order increases, but in principle, at sufficiently
high energy, any given resonance can show strong magnetic
effects. We give a few results in Appendix B.

One can extend these results to integrable systems other
than the square billiard, and to other flux configurations.
There are other billiard shapes, such as the rectangle, certain
triangles, the circle, and the ellipse. One may also study
“soft billiards,” e.g., a confining potential of the form
U(x,y)=U(x)+U,(y) whereU; is some sort of anhar-
monic potential. Soft billiards are more accurate representa-
tions of mesoscopic systems than are hard wall billiards, but
the additional theoretical effort they require is not usually

: : : : made. A practical difficulty, although not one of principle, is
-5 -4 -3-2-10 that it may be necessary to resort to action-angle variables,
o and it may be tedious to find the periodic orbits of the flux-

FIG. 13. Ideal zero radius flux line at the square center. Uppefr€€ system, if some tiling trick cannot be used.
figure, numerical current streamlines for a quarter of the square. In any case, the first steps of the program are to choose a
Lower figure, theoretical current densify(x,0). Dashes indicate convenient surface of section, choose the resonance of inter-
the numerical minima. est, find the AB phasé@(x,x’), and the effective potential

-5

Jy(2,0)
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V(x). Much insight can be gained at this level. reversal invariance, is the “step” billiard23]. This is a

A much larger class of systems solvable by this techniquequare billiard of sidé. say, with one side moved down by
are nearly integrable systems subjected to a flux. For ex-SL=e€L for |x|<a. The perturbed (1,0) resonance states
ample, one could start from a nearly square trapezoid. Thefsee” a square-well effective potential to first approxima-
one would have a double perturbation of the square, ongon. If kL is small, butky/L SL=1, our theory works, gives
from the flux, the other from the change of shape. Each ofontrivial localization, and is similar to the flux line with
these perturbations can have big quantum effects, and thgmall ¢/ ¢,. The rangekdL =, i.e., SL a half-wavelength,
combination of the two can be quite different from each onegives no phase shift for normal incidence and is similar to an
separately, especially since one breaks time-reversal invaraBFL with ¢/¢,=1. Experiments on this system could be
ance and the other doesn’t. Again, finding the effective pocarried out in several contexts.
tential is key to understanding the qualitative results.

C. Comparison with other methods

B. Possible experiments An issue that has been raised is whether older methods

There are possible experiments and even interesting deould have found the solutions we have obtained. For ex-
vices that might be made, if time reversal can be brokenample, the Birkhoff-GustavsofBG] normal form approach
Having unusual wave functions suggests some of the possis quasiclassical and also relies on a small classical param-
bilities. Probes of the system will depend on whether theeter. We discussed the relation of that approach to ours pre-
wave function is large or small at the position of the probe.viously [11] and we believe BG would need considerable

Mesoscopic systems are of great current interest. In thigrodification to solve the problems that are the subject of this
case, electrons are the particles and there is a magnetic fluR2PEr. S
The system of Ley et al. [3] consisting of isolated metallic _ ©On the other hand, there are the “adiabatic” methods,
“squares” is a case of this type, but one can imagine leaddke Keller-Rub|now[_24], anq its relatives and extensions,
weakly connected to a metallic square whose coupling desuch as the “parabolic equation method” of Leontovias]
pends on the shape of the wave function at the Fermi leveind Fock26] and the “etalon method” of Babich and Bul-
and the position of the lead. dyre\{ [27] where t.here is not necessarily an explicit small

Another type of mesoscopic system is formed of Surfacézlas§|cal perturk_)atlon. The_se methods could_ Ilk_ely be used to
electrons in “corrals” on a metallic surfad@0]. The wave obtain our solutions if apphed to the_ magnetic-field _probl_em.
functions of such electrons can be probed with atomic accul? & paper to be submitted, we discuss the relationship of
racy with a scanning tunnel microscope. Achieving an approthese methods, as well as that of Born and Oppenheimer, to
priate parameter range will be difficult, but perhaps not im-OUurs.
possible. The corrals are leaky and do not really confine the
electrons to their interior, but in many cases that idea seems D. Conclusions

to work, at least qualitatively. We have solved a characteristic example of quantum
Another kind of system is the shallow square or rectangUstates in a weakly perturbed integrable system. The states
lar container of liquid, which is vibrated to set up standingang their energies can be classified and found to good ap-
waves. Instead of a flux, the system can be rotated with 8roximation. The wave functions are quite nontrivial and in-
uniform angular velocity. This differs from the uniform mag- teresting, as compared with the states of the integrable sys-
netic field in that theA? is absent from the Hamiltonian, but tem. The states of a hard chaotic system are also not
since under our assumptions that term can be neglected anyividually interesting, except for some weak “scars,” re-
way, the same kind of results are expected. One can alsqyiring resort to statistical studies and averages over many
introduce a nonideal ABFL. This is done by making a smallgtates in such systems.
hole in the tank and allowing the water to flow out with @ oyr technique applies to a very large class of systems,
certain vorticity. Experiments on such a system have bee@njch includes experimental systems. The particular case we
performed[21], although scattering rather than eigenstatesmphasize breaks time reversal invariance, and the eigen-
was studied. Such an experiment would certainly have pedasates have persistent currents. As far as we know, these are

gogical value, and if the experiment is done, it may in fact bene first published nontrivial examples such states.
the first detailed observation of a nontrivial persistent current

State.

Still another system is the thin square microwave cavity.
Here the “quantum” waves are microwaves. There is no This work was supported in part by the United States NSF
quantity directly equivalent to the magnetic field. However,Grant No. DMR-9625549 and United States—Israel Bina-
one can replace part of the boundary by a ferrite §2@j,  tional Science Foundation, Grant No. 99800319. R.N. was
say between —a,a] on one side of the cavity. The phase partially supported by the NSF Grant No. DMR98-70681
shift of the microwave upon reflection from the ferrite de- and the University of Kentucky. We thank Professor Director
pends on the direction of magnetization of the ferrite and thé?eter Fulde for hospitality at the Max-Planck-Institut fu
direction of incidence of the microwave. This gives as anPhysik komplexer Systeme in Dresden, where some of this
effective potential exactly that of Eq24). There is then a work was done. R.N. and O.Z. thank Dr. R. Seiler for hos-
localized eigenstate circulating the cavity in one direction,pitality at the SFB 288 “Differentialgeometrie und Quanten-
but not the other. A similar situation from the point of view physik,” TU Berlin. O.Z. thanks Dr. F. Haake for hospitality
of diffraction and effective potential, but maintaining time- at the UniversitaGH Essen.
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y tive) x projection of the momentum at’ are generated by
the first(second term in Eq.(A3).

Although the following calculation depends in which sec-
tor inside the square the point lies, the final result is indepen-
dent of sector. So for definitiveness we assymex<-—vy,
that is the point lies below the diagonals-x andy= —x.

x We have numbered the orbits by 0, . . . ,3according to the
terms in Eq.(12) they represent. Fag=0 orbit, expressing
the action in terms of the distanc&(r,x’;E)=kL(r,x")
=k\/(x—x")?+ (y+1/2)?, we find the prefactor in EA2)

1 s ‘1/2 1 112
= . (A4)
FIG. 14. A diagram showing how the full wave function 8wk ax’&/ﬂ 8\/§7TL

V¥ (x,y) is constructed from the surface of section wave function. ) o ) ) .

Two points on the surface of sectiox},, x5 dominate in the sense The stationary point in the integréAl) is determined by the
of stationary phase, and there are two paths from each of thesgxponents in Eq(A2) and in the first term of EqA3). It is
points to the pointX,y). X;=X—y—1/2, as in a 45° orbit. The=0 wave function is

then

- 102 )| &)-12 )

APPENDIX A: TWO-DIMENSIONAL WAVE .
FUNCTIONS Vo(x,y)=e Ny (x—y—3 (A5)

In this Appendix we find the two-dimensional wave func- dropping a constant factar Y% (<2= 742 The terms with

tion. If a solution togy=Ty is known, the wave function in s=1,2 3 can be obtained in the same manner with an appro-
the square can be found by evaluating the integral over thgriate addition of the Maslov phase for each bounce.

surface of sectiofl12] If r is located in a different sector of the square, the re-
sults remain the same if proper account is made of the
W(r)= f G(r,x":E)(x")dx’. (A1) Maslov phases. Thg Iabeling'of the orbits is invariant if done

by the rule:s=0 trajectory arrives to from the South-West,

s=1 from the South-Easg=2 from the North-East, and

In this case =3 from the North-West.
) U2 It is worth noticing that Eqs(A5) or (12) are valid only
G(r.x:E)= 2 E i S up to the square-root order of the small parameteB/k of
T & 2|27k ox'as | the perturbation theory behind our paper. If we wish to ob-

tain the results valid to the first order efwe should(a) use
a better approximation fou,,(x’) [11], (b) add the vector
potential term to the actio8(r,x’;E), and(c) find a correc-
tion to the stationary point due 1g,(x").
in our units. Here the sum is over tkenperturbeglclassical Alternatively, the above calculation can be carried out in
trajectories going from a point’ on the surface of section to the repeated square scheme defined in Sec. lll. The surface
a pointr inside the square, whei®(r,x’;E) is the reduced of section is then the ling=— 1/2 (identified withy=23/2).
action for this trajectoryy, is the direction perpendicular to We can restrict ourselves to the trajectories with the positive
the trajectory at point, and v is the Maslov index. In a x andy projections of the momentum in this extended mani-
single square scheme we take the surface of section to be tiigld. Then only ¢,(x’) is needed to generate a complete
lower side of the square-1/2<x’'=<1/2, y’=—1/2. Then two-dimensional wave function. In order fa¥ to have a
Y(x') is a linear combination of functiong, and ¢, de-  period 2, the conditionu,(x'+2)=(—1)"uy,(x’) must be
scribed in the text such thai( + 1/2)=0 (there should be no satisfied. A point in the original square will be represented
flow through the ends It follows then thatu,(x’+2) by its images in foufup to a translation bAx=2) domains
=(—1)'uy(x’) and in the manifold. Each of these images is connectediy
_ _ 45° orbit to the surface of section. These four orbits generate
Pp(x)=e" ¥ u(x)+iTe ¥ u(x — 1) (A3)  the four termss=0,...,3 in Eq.(12) as follows:s=0 is
produced by the point in the original domains=1,3,2 by
with r definedby Eq. (13). Here we have also used a zero- its reflection about the right side of the square, upper side of
field quantization conditionk=mn/2 and the property the square, and the composition of both, respectively. There
Um(X")=(—1)"un(—x"). Note that in the surface of section are no Maslov phases in EA2) in this case. However the
picturer does not have a direct interpretation as a represenermss= 1,3, which are obtained by the odd number of re-
tation label. flections, should be summed with an additional minus sign.
We evaluate the integrdAl) in the stationary phase ap- Indeed, the Jacobian of the coordinate transformation from
proximation. As we shall see, only the 45° orbits survive.the original square to the extended manifold is singular on
For a given pointr=(x,y) there are four such orbits: two the boundary. So, when the wave function on the manifold is
starting atx; and two atx; (Fig. 14. Each orbit gives one folded back to the physical domain, a phase differemaeill
term in Eq.(12). Note that the orbits with the positieega- be accumulated between each pair of domains related by one

(A2)

o
Xex;{iS(r,x’;E)—iEV
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2 2
phase for an impenetrable wall. k2~ + 1+ p_z
q

‘Cpq

reflection. Of course, this phase is analogous to the Maslov 2.
~( (@ (B1)

APPENDIX B: HIGHER RESONANCES andn is an integer. The first term is much larger than the

For completeness, we give some results for higher resg2econd- Again, we have the approximate quantization of
nances, which can be labeled with relatively prime integer Yva_\lfﬁlengths n '\a/m orb%lengtg. bei iated with
p.q. These resonances are closely related to states of a re%—e X %ﬁgé?ig?]a tﬁa(sxihee?\i?at?ooﬁ%) el':']r?isas‘iroacrg/irs\/:}
angle of side 1@, 1/g. Obviously, for the square, the ener- I ’ . m - .

. contribution to the energy is of course symmetrigiandq,
gies forp,q are the same as those fogyp. The correspond- that iSqZE(p): pZE(q) The potential is
ing states are also the same after a 90° rotation. However, for m m
|p—al/|p+ g| not too small, thep,q states and thg,p states q
are different and are nearly uncoupled and there is a nearly Vpg(X) = BLZ—} \4
doubly degenerate set of energy levels. The splitting of the Pa
exact levels, which are combinations pff andqp that are  whereV is given by Eq.(9). V4 has period 2j, rather than
eigenstates of the rotation opera®r can be estimated by 2. The boundary condition on the eigenstatesu(s—2)
using an analog of “chaos assisted tunneling.” =e'Pu(x), where B=2xfrad pn/(p?+q?)] and frac indi-

The classical periodic orbits makebounces from the  cates the fractional part. The potential can be regarded as
sides andp bounces from the sides. These resonant orbits weak if kB<pql gq_ If this condition is satisfied theq
all have the same Iengtﬁpq=2\/p2+ g°. The maximal di- resonance can be ignored. Similar but somewhat more com-
rected area enclosed by an orbit=isl/2pg. The energy is plex results can be obtained for rectangles and certain tri-

L
)

3
Ell

q

1
- 5}, (B2)

k2. where angles.
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