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Square billiard with a magnetic flux
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Eigenstates and energy levels of a square quantum billiard in a magnetic field, or with an Aharonov-Bohm
flux line, are found in quasiclassical approximation, that is, for high-enough energy. Explicit formulas for the
energy levels and wave functions are found. A number of interesting states are shown, together with their wave
functions. Some states are diamagnetic, others paramagnetic, still others both dia- and paramagnetic. Some
states are strongly localized. Related systems and possible experiments are briefly mentioned.

PACS number~s!: 05.45.2a, 03.65.Sq, 03.65.Ge
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I. INTRODUCTION

The behavior of mobile charged particles confined
some region and also subjected to a magnetic flux has in
ested physicists since the discovery of the Hall effect ove
century ago. Quantum effects turned out to be subtle
surprising, as attested by Landau diamagnetism and
Aharonov-Bohm@AB# effect @1#. About twenty years ago
with the advent of the quantum Hall effect and mesosco
systems, the two-dimensional case became prominent
about the same time, the development of the subjec
‘‘quantum chaos’’ also focused interest on such systems
being among the simplest of the ‘‘Gaussian unitary e
semble’’ universality class.

There is thus a long history of work on the confined qua
tum motion of charged particles in a magnetic flux. It
remarkable that all previous workers overlooked the fact t
many fundamental cases, some of which have been ex
sively studied numerically, can be solved and classified a
lytically to good approximation. Moreover, the results ha
an interesting and suggestive complexity.

In this paper we obtain good approximate solutions t
couple of simply posed and well-studied problems of t
type. A preliminary version has appeared electronically@2#.
Rather than stress the generality of our method, we focu
a typical problem: a two-dimensional charged particle c
fined to a square billiard in a perpendicular magnetic fl
Certain conditions on the flux are required to justify the a
proximations, and we also require the energy of the part
to be large. These approximate solutions are compare
numerical solutions. The two flux configurations conside
are a uniform flux and an Aharonov-Bohm flux line. It
crucial that the square billiard is integrable. Systems ot
than the square to which our methods apply will be m
tioned at the end.

There are many recent research papers in which the b
system studied is a square or rectangular billiard with a m
netic flux. A number of these are inspired by the experime
of Lévy et al. @3,4#, which measure the magnetic susceptib
ity of a collection of a considerable number of mesoscop
two-dimensional metallic systems, each approximately
square. The field is nearly uniform over the square in t
case.

In the presence of a magnetic flux, there is the possib
PRE 621063-651X/2000/62~2!/2046~14!/$15.00
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that persistent currentsexist. In other words, it is possible
that the equilibrium state has a nontrivial current. Indeed,
find that eigenstates of the quantum system have interes
current densities. Although the wave function has a fai
simple representation, the currents can be quite comp
Some states are predominantly paramagnetic, others are
dominantly diamagnetic. Still others may support both stro
paramagnetic and strong diamagnetic currents that in t
nearly cancel. However, these states strongly affected by
field are rather rare and most states have weak persis
currents.

Ideas from the field of quantum chaos have also m
vated much work. Since the magnetic field intuitively h
circular symmetry, which ‘‘conflicts’’ with the symmetry o
the square, one might expect chaos to ensue@5#, as is the
case with the Sinai billiard. Another theme of quantum cha
is that of energy level and wave-function statistics@6#. These
statistics depend on whether time-reversal symmetry~or
other antiunitary symmetry! is in force. A natural way to
break time reversal is by a magnetic flux.@The square with a
uniform flux still has an antiunitary symmetry, however.#

Diffraction effects, in which a classical length short
than the wavelength becomes important, are much studie
this context. This is obviously the case for the zero rad
Aharonov-Bohm flux line@7#. The sharp corners of the
square also cause diffractive effects in the presence of a
form magnetic field. These effects are much smaller than
the flux line, of course. We give estimates for the parame
range in which such diffraction becomes important, althou
we defer study of these effects.

Our main motivation however, is that we add to the sto
of solvable problems, and perhaps suggest some exp
ments. In the textbooks, there are relatively few such in
grable problems, basically, only those that reduce to one
mension, or separate into several one-dimensional proble
The square without a magnetic flux is such a case in wh
the x andy motion separates.

The traditional way to widen the class of approximate
solvable problems is perturbation theory and indeed, our
proach is a form of quantum perturbation theory. We are a
to study systems that are integrable except for a ‘‘classic
weak’’ perturbation. Of course, treating weak perturbatio
classically is challenging, because the long-time behav
may be chaotic. However, quantum perturbation theory
2046 ©2000 The American Physical Society
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PRE 62 2047SQUARE BILLIARD WITH A MAGNETIC FLUX
better behaved and depends on the short-time rather tha
long-time classical behavior.

On the other hand, perturbations small in this sense
give rise to very large quantum effects, especially on
wave functions. Moreover, even perturbations that cha
some length scale by an amountdL!l, where l is the
wavelength, can have big effects. In terms of the stand
nomenclature, adegenerateperturbation theory is required
and a number of unperturbed states are strongly mixed
gether to give the final result. Usually, this is done by diag
nalization of a small matrix, but in our case the ‘‘matrix
can be quite large. However, rather than just diagonaliz
some matrix by a computer calculation, we obtain the re
by an intuitively appealing Schro¨dinger differential equation

Having solved, this interesting class of problems, we d
covered some other methods of obtaining the solution at
same level of approximation. We shall present these meth
elsewhere@8#.

II. SQUARE IN A UNIFORM FIELD

We begin with the case of uniform field. For given velo
ity v, the cyclotron radius isRc5v/vc5cp/eB where vc
5eB/mc, and p5mv. The momentump5\k5h/l is
quantally related to wave numberk and wavelengthl. We
define the classical small parametere5L/Rc5eBL/\ck
52pf/f0kL. HereL is the length of the side of the squar
f is the magnetic fluxBL2, and f0 is the flux quantum
hc/e. Small e allows us to approximate orbits within th
square as straight lines, to first approximation. This is so
times known as the Aharonov-Bohm regime@3#, since the
leading quantum effects come from the phase interfere
effects associated with the vector potential, and do not
pend on the change of classical orbital motion caused by
Lorentz force. Many potential experiments are in this para
eter range.

We choose units such that the dimensionless field isB
[2pf/f0 , i.e., 2p times the number of flux quanta in th
square. We takeL, \, and 2m to be unity so that

e[B/k!1. ~1!

The dimensionless wave numberk is the number of wave-
lengths in a side of the square, up to a factor of 2p. It
satisfies

k@1, ~2!

which is the basis for the quasiclassical approximation.
We shall see that the condition for standard quantum p

turbation theory to work is

kAe!1, ~3!

or, in other wordsAkB!1. This is not completely obvious
and in other contexts@9#, it has been guessed incorrectly th
the quantum ‘‘perturbation border’’ iske!1, i.e., B!1,
which has the simple meaning that the number of flux qua
in the square is small. We, however, find that nothing mu
changes at the borderB;1.

There may also be a ‘‘high energy’’ condition in the for
of a requirement thatkeb!1. The exponentb depends on the
the
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smoothness of the perturbation. We find that for the unifo
field b52, while for the ideal flux lineb51. Note that for
fixed B the energy can be arbitrarily high, but if insteade is
kept fixed, there is a limitation on the energy.

This high-energy condition is basically the requireme
that diffraction effects not be too important. From a sem
classical perspective, diffraction effects occur where the c
sical system has a length scale as short or shorter thanl. An
ideal flux line obviously gives rise to diffraction effects. Bi
liards also have such a length scale of course, namely,
distance it takes the confining potential to change from z
inside the billiard, to infinity outside the billiard. This can b
taken into account by a ‘‘Maslov phase’’ ofp at the bound-
ary, however. There are also the sharp corners of the squ
The square corners whose angular opening isp/N, where
N52 is an integer, are a special case at which no diffract
occurs@10#. With such an angle, the billiard can be extend
by reflection, and the corner in effect disappears. Howev
in the presence of a magnetic field, this reflection techniq
does not work, and with sufficiently large field, orbits that h
directly into the corner eventually become important to t
semiclassics.

III. BOGOMOLNY’S QUASICLASSICAL SURFACE
OF SECTION METHOD

Our approach@11# utilizes the quasiclassical surface
section@SS# method of Bogomolny@12#. Poincare´’s surface
of section is a surface in classical phase space through w
all interesting orbits repeatedly pass. For two-dimensio
systems, the surface of section is a two-dimensional ph
space. For a billiard, the Birkhoff surface of section is oft
chosen. Namely, the space part of the surface of section
resents a point on the boundary at which the orbit boun
and is usually measured by the distance along the boun
of the billiard. The variable conjugate to this is the comp
nent of momentum parallel to the boundary at the momen
contact. However, many possible surfaces of section can
considered, and some are more convenient than others.

Bogolmony’s method is a generalization of the ‘‘boun
ary integral method’’@12,13#, applicable for billiards, and
based on Birkhoff’s surface of section, to much more gene
systems and surfaces of section. The boundary inte
method introduces an operatorK(x,x8,E) and an integral
equationc(x)5*dx8K(x,x8;E)c(x8). This exact equation
has nontrivial solutions only whenE is on the spectrum. The
SS wave functionc(x) is the normal derivative of the ful
wave functionc(x)5]C(r …/]n when r is at the boundary
point x. We should mention that only recently has the boun
ary integral method been extended to uniform magne
fields in the case thate is of order unity@13#.

Bogolmony’s operatorT(x,x8;E) is basically the quasi-
classical approximation toK. It thus takes the particle cross
ing the SS at positionx8 to its next crossing at positionx, all
at energyE5k2. The quasiclassical approximation to th
spectrum is determined by the existence of solutions ofTc
5c. If only the spectrum is of interest, as it has been
many authors, the condition may be expressed as d@1
2T(E)#50.

The operatorT is given quite generally by
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2048 PRE 62R. NAREVICH, R. E. PRANGE, AND OLEG ZAITSEV
T~x,x8;E!5F 1

2p i U]2S~x,x8;E!

]x]x8
UG 1/2

exp@ iS~x,x8;E!#,

~4!

whereS5*x8
x p•dr is the action integral along the classic

path fromx8 to x. Note that, rather than giving position an
momentum on the SS, positions at two sequential cross
of the SS are given. It is assumed, for notational con
nience, that there is a unique orbit fromx8 to x. We also
suppress the Maslov phase. Note thatT is semiclassically
unitary.

The classical actionS(x,x8) generates thesurface of sec-
tion map. Namely, the momenta conjugate tox,x8 are given
by

p5
]S~x,x8!

]x
; p852

]S~x,x8!

]x8
. ~5!

Equation ~5! implicitly gives the surface of section ma
$p,x%5M$p8,x8%.

We attempt to simplifyT by astute choice of the surfac
of section. It seems simpler to use just one side of the squ
rather than all four sides. It is even easier to use a metho
images. Namely, we consider, instead of a unit squarex,y
P@2 1

2 , 1
2 # ^ @2 1

2 , 1
2 #, an infinite channel of width 2 obtaine

by reflecting the original square first aboutx5 1
2 and then

abouty5 1
2 , and finally repeating the resulting 232 square

periodically tox56`. The flux changes sign in neighborin
squares. This geometry is shown in Fig. 1. There are a c
tinuum of channel solutions. The solutions to the origin
square are a subset of these, which exist only at certain q
tized energies. This quantization can be carried out in sev
ways, one of which is shown below.

The SS is taken as the axisy52 1
2 , which is identified

with y5 3
2 . Because the field is classically weak, the pa

used to calculate the action is approximated by a stra
line. We immediately find

FIG. 1. A channel of 232 squares replacing the original 131
square. Adjacent squares are reflected and the magnetic
changes sign. An orbit in the original square is replaced by a ne
straight-line orbit in the channel. The orbit curvature of radiusRc

due to the Lorentz force is exaggerated for clarity in the figure. T
orbit shown goes fromx8 to x12 in the channel representation an
is close to a (1,1) periodic orbit. It is paramagnetic, since the
flections from the square sides cause it to circulate in the oppo
direction from a free orbit in the field.
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S~x,x8!5kA41~x2x8!21F~x,x8!, ~6!

i.e., the flux free result plusF5(e/c)*A•dr , where the in-
tegral is done along the straight-line path.

Our scheme@11# finds solutions ofTc5c by a perturba-
tion theory. Taking advantage of the fact thatT is unitary, we
first solve

E dx8T~x,x8;E!c~x8!5eiv(k)c~x!, ~7!

treatingk5AE as a parameter, and then find the energies
solving v(k)52pn. Given c(x), a quadrature that can b
carried out quasiclassically, yields the full wave functio
C(x,y). Details are given in Appendix A.

IV. RESONANCES

Classical and quantum perturbation expansions in pow
of e fail near resonances, necessitating modifications
introduceAe. Classical resonances correspond to perio
orbits of the unperturbed system. Periodic orbits on
square correspond to straight-line orbits in the channel fr
(x8,2 1

2 ) to (x5x812p/q, 3
2 ). Hereq is a positive integer

andp is a positive or negative integer relatively prime toq.
Negative and positivep are not equivalent if there is a mag
netic flux. Between resonances, or near resonances with l
p and q, ordinary perturbation theory works. See Ref.@11#
for a fuller discussion.

We now specialize to the (61,1) resonances. These a
the simplest resonances depending strongly on the field
as we shall see, in some sense dominate the magneti
sponse.

We look for a solution of Eq.~7! of the form c(x)
5eikxum(x) wherek5k cos 45°5k/A2 andum varies much
more slowly than the exponential. The reason for this cho
is that the phase factoreikx makes the rapidly varying phase
in the integral*dx8Tc to be stationary atx85x22. This
corresponds to rectangular shaped periodic orbits of
original square whose sides make angles of 45° with thx
axis. Such orbits are shown in Fig. 1.

Becausee is small, the phaseF does not greatly influence
the position of the stationary phase and it suffices@11# to
evaluateF(x,x8) at F(x,x22)5F(x12,x). @The accuracy
of this approximation depends on the smoothness ofF, and
failure of the approximation is related to the onset of diffra
tion effects mentioned earlier.# F(x12,x) is obtained by in-
tegrating the vector potential about the closed rectang
loop, and somewhat remarkably is independent of gau
The result@11# is thatum satisfies the Schro¨dinger equation

2um9 1V~x!um5Emum , ~8!

whereV(x)52kF(x12,x)/L and L5A8 is the length of
the periodic orbits. Thus we convert the phaseF to a ‘‘po-
tential’’ V. The transverse energy Em enters into the total
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PRE 62 2049SQUARE BILLIARD WITH A MAGNETIC FLUX
energy of the eigenstate, according to Eq.~15! below, andm
is one of two quantum numbers classifying the states.

V. TRANSVERSE POTENTIAL AND PERIODIC ORBITS

For a given resonance and surface of section, there i
effective potentialV that determines the functionsum and the
energyEm . The resonance classically corresponds to a c
tinuous set of nonisolated periodic orbits of the integra
problem. Before perturbation, each of these orbits has
same action. The potentialV, to leading order, is propor
tional to the change of the action under perturbation, ca
lated along the unperturbed path. Each such path is lab
by the parameterx, where it crosses the surface of sectio
Higher order corrections may also be found@11#.

Knowledge of the potential gives much qualitative insig
into the problem. Its minima,@if smooth#, are at stable peri-
odic orbits, as a rule, and its maxima are at the unsta
orbits. In that sense, it represents a classical island chain
course, it was known how to quantize states near the st
periodic orbits, if a harmonic expansion is allowed. Ho
ever, the states that can be found with the aid ofV are much
more general and in particular the states with energiesEm

near or even above the maxima of the potential can also
found.

In general, isolated unstable periodic orbits do not supp
wave functions, but rather ‘‘scar’’ them@14#. In other words,
there appears some excess weight on the wave function
the unstable orbit. In the sense of Feynman’s path-inte
formulation, there are not enough classical paths ‘‘near’’
unstable orbit, to build a complete wave function. Here n
means that the paths are close to the periodic orbit in
sense of being well approximated by a quadratic expan
about the periodic orbit.

The same is true in the present case, and wave funct
cannot be built just from orbits near an unstable perio
orbit. However, because of the small parametere, we can
approximate well an entire shell of orbits in the Feynm
integral, and express the result in terms of the potentialV(x).
This shellcan support many states that we find. Thereare
states whose energies are near the maxima ofV and thus
have extra weight near the unstable periodic orbits.

The interpretation ofum is that it gives the structure of th
wave function ‘‘transverse’’ to the resonant periodic orbi
Along the periodic orbits, the wave function varies rapid
but transversely, it varies relatively slowly. The ‘‘longitud
nal’’ and transverse motions are weakly coupled, becausV
and thusum andEm depend onk, but this is easy to take into
account.

The concept of transverse is a little murky in the quant
case, although there are cases, including the one under s
where it can be made more precise. We shall not dwell
this further in this paper, however.

We also remark that the Schro¨dinger equation~8! requires
boundary conditions, in order to pick out the physically i
teresting solutions. These boundary conditions come fr
the properties imposed on the solution by the physics of
problem, and are usually simplified by symmetries of t
problem.
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VI. UNIFORM FIELD SOLUTION

A. Effective potential

For the uniform field, the potential is

V~x!52Bk~ 1
2 22x2!/L; xP@2 1

2 , 1
2 #,

V~x!51Bk@ 1
2 22~x11!2#/L; xP@2 3

2 ,2 1
2 #, ~9!

V~x!5V~x12!.

The factor1
2 22x2 is simply the area enclosed by a period

(1,1) resonant orbit in the shape of a rectangle that boun
from the bottom of the square atx. In Appendix B we give
the corresponding potential for other resonances.

This periodic potential consists of alternating positive a
negative harmonic potential wells of depthBk/2L. At the
boundariesx56 1

2 , the second derivative of the potential
discontinuous, a fact which leads to the mentioned diffr
tion effects at sufficiently largeB2/k.

For the (21,1) resonance, whose orbits are time rever
(1,1) orbits,V(x) changes sign. This would not be true ifV
had its origin in a time-reversal invariant perturbation of t
square, for example, a small change of shape. We can
clude the (21,1) resonance in the present scheme by att
uting the region 1/2,x,3/2 to that resonance. This exten
sion of thex coordinate is thus similar to use of an ‘‘angle
variable, with positivex velocity vx for xP@2 1

2 , 1
2 #, and

negativevx for xP@ 1
2 , 3

2 #.
If ABk5kAe is small, the potentialV(x) can be treated

perturbatively. On the other hand, for sufficiently larg
Bk/L, Eq. ~8! will have low-lying tight-binding harmonic-
oscillator type solutions centered atx50, ~if B.0), with
energies approximately given by

Em52 1
2 Bk/L1~m1 1

2 !A8Bk/L. ~10!

This formula holds form!ABk/L. The lowest wave func-
tion is approximatelyu0(x)5e2ABk/2Lx2

, which is arbitrarily
narrow at large energy. These states areparamagnetic, as
follows from the fact that]Em /]B,0. This will be seen
more clearly below.

Equation~8! is valid for largerm. Although very simple
analytic answers are not available, the problem is the w
known one of a particle in a one-dimensional periodic pot
tial. We shall see below that we need only consider
boundary conditionsu(x12)56u(x). This simplification is
a consequence of the symmetry of the square, and some
slightly more complicated would be needed for the rectang

The solutions to Eq.~8! may be put into four classes
A, B, C, andD. ClassA states are those with ‘‘low’’ ener-
gies near the bottom of the wellEm;2 1

2 Bk/L. For these
casesu(x) has support only nearx50,62,64, . . . These
localized states are strongly paramagnetic, that is, the cur
circulates in the opposite direction from that of the particle
free space. In this casedEm /dB,0. ~We shall see that the
transverse energyEm carries nearly all the field dependenc
of the total energy of the corresponding two dimensio
eigenstates.!

ClassD states have energies much greater than the m
mum potential energy, i.e.,Em@ 1

2 Bk/L. In this case, the
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magnetic field is a small perturbation, since the ‘‘potent
energy’’ V(x) in Eq. ~8! is small compared with the ‘‘kinetic
energy’’ given byu9. These states are weakly diamagne
We shall not consider further this case. Of course, the
proximation of expanding about the (1,1) resonance eve
ally breaks down, and higher-order resonances are event
involved @11#.

ClassC has total transverse energy near the top of
potential V(61), that is, Em; 1

2 Bk/L and the states ar
strongly affected by the magnetic field. Very crudely, th
are somewhat localized or ‘‘scarred’’ nearx561, since
they spend more time in that region. This means that they
strongly influenced by the (21,1) resonance. They are dia
magnetic anddEm /dB.0.

States of classB form a transition region between th
low-energy paramagnetic states, and the higher-energy
magnetic ones, i.e., nearEm;0. These are states strong
affected by the field, but are such thatdEm /dB;0.

B. Quantization

There are two states with identical energy in the repea
square scheme. These arec I5eikxum(x) and c II
5e2 ikxum(x21). @Changing the sign ofk is equivalent to
changing the sign of the field, which in turn can be acco
plished by replacingV(x) by V(x11).#

Rather than finding the eigenvalues by imposing con
tions directly on thec ’s, as in Appendix A, we produce th
four two-dimensional solutionsC corresponding toc I ,II .
@Eachc(x) gives twoC(x,y)’s becausey and 12y in the
strip represent the same point in the original square.# We
show elsewhere@8# that these states can also be found
rectly by a Born-Oppenheimer approximation. One of the
states may be written

C0~x,y!5eik(x1y)um~x2y2 1
2 !. ~11!

The remaining three states, 1, 2, and 3, can be obtaine
rotations, e.g.,C1(x,y)5RC0(x,y)5C0(y,2x), etc. Here
R:(x,y)→(y,2x) is the rotation by 90°. The gauge can b
chosen so that the Hamiltonian is invariant underR. There-
fore, the symmetry of an eigenstate can be labeled br
50, 1, 2, and 3, where the eigenvalue ofR is i 2r .

Thus, an eigenfunction with symmetryr is given by

C (r )~x,y!5S (
s50

3

i rsRsD eik(x1y)umS x2y2
1

2D . ~12!

@The sequence of rapidly varying phase factors
$eik(x1y),eik(2x1y),e2 ik(x1y),eik(x2y)%. These in turn are
rapidly varying in the 45° directions of the sides of the p
riodic orbits.# In general, a solution of Eq.~8! satisfies the
boundary conditionum(x12)5eibum(x). We need to find
the allowed values forb andk that will give the quantized
energies. These conditions are obtained by requir
C (r )(x,2 1

2 ) to vanish, corresponding to Dirichlet condition
in the original problem. If the wave function vanishes on t
bottom, it will by symmetry vanish on the boundary of th
square.

Clearly, the sum of the two terms@s50,3# in Eq. ~12!
which are proportional toe1 ikx must vanish. This implies
l
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um(2x)52 i 23re2 ikum(x). The reflection symmetryV(x)
5V(2x) allows us to takeum(x)5(21)mum(2x). In turn,
this allows quantization ofk in the formk5np/2, wheren
is an integer satisfying certain conditions depending onr and
m. Similarly the two terms proportional toe2 ikx in Eq. ~12!
give the conditioneib5(21)r . The relationship ofn to r and
m is

n mod 45@2~12m mod 2!1r #mod 4. ~13!

It is straightforward to find for the eigen wave number

kn,m52pn/L1Em /k. ~14!

Equation~14! should be solved iteratively. For example, th
first approximation replaces thek dependence of the term
Em /k by 2pn/L. Equivalently, the energy

En,m54p2n2/L 212Em . ~15!

Note thatEm depends, relatively weakly, onn, since thek in
Eq. ~10! should be replaced by 2pn/L. The dependence o
the total energy onB comes through the termEm . Equations
~14! and ~15! hold for all symmetries and successive valu
of n at fixedm cycle through the representations ofR. Note
that, sinceEm /k!k, the wavelength is given approximate
by L/n, i.e., the length of the classical orbits is an integ
number of wavelengths.

Thus we have an expression for the energies of a clas
states, namely, the (61,1) resonant states. They are label
by integern that effectively gives the number of wavelengt
measured along the (1,1) periodic orbits, and by a sec
integerm that gives the number of ‘‘nodes’’ ‘‘perpendicu
lar’’ to this orbit. The very lowm states could very well have
been found by earlier methods, since they can be obtaine
expansions about the stable periodic orbits. However, th
remarkable states do not seem to have been noticed he
fore.

C. Orbital magnetism

The (1,1) states just obtained dominate the magnetic
bital susceptibility in a parameter range appropriate to
periments@3#. The susceptibility for the square is on a sca
rather larger than the Landau diamagnetism. It is of cou
not necessary to find the states, or for that matter, their
ergies, to calculate the susceptibility. That is because
susceptibility depends only on the density-of-sta
smoothed over an energy width proportional to the tempe
ture. The Gutzwiller or better, the perturbed Berry-Tab
trace formula@4#, is designed to give exactly that quantity
quasiclassical approximation. Nevertheless, it’s interes
and previously unremarked, that a small subset of states
counts for most of the magnetism.

We start by finding the orbital susceptibilityx of a system
of noninteracting electrons in a grand canonical ensem
This is given byx5]M/]B where the magnetizationM
52]V(T,m,B)/]B. Here the grand potential is

V~T,m,B!52kBT(
a

ln@11e2(Ea2m)/kBT#. ~16!
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The temperature isT, kB is Boltzmann’s constant, andm
5kF

2 is the chemical potential. The dependence ofV on B
comes only because the eigenenergiesEa depend onB. The
sum is overall eigenstates labeled bya.

We divide the statesa into those relatively few whose
energies depend appreciably on the field and the rest. T
field dependent states are exactly the (1,1) states fo
above, plus possibly states classically associated with a
other low resonances, e.g., (1,3). The reason for this is
the (1,1) states enclose the maximum directed area. T
also have the shortest lengthL which we will see plays a
role. The even shorter (0,1) periodic orbits do not encl
any flux in the approximation of neglecting the curvature
the orbits although at higher fields they eventually beco
important.

Thus, we replace(a5(b1(n,m and we can neglect th
sum b over field independent states. The second sum, o
(1,1) resonance states, has many fewer terms than the fi
a given range of energy. Sincem is related to the number o
particles, it is nearly independent ofB. It is possible to find
m5kF

21dm(B) and make a consistent expansion, and tha
indeed necessary if an average over a large numbe
squares with canonical statistics is done@4#. However, we
just want to illustrate how the (1,1) states dominate the s
ceptibility, and we will not consider this further averag
Then, we may approximate

M~T,m,B!52(
n,m

]En,m

]B
f D@En,m~B!# ~17!

and f D is the Fermi-Dirac distribution function.
Using the Poisson-sum formula, replace the sum onn in

Eq. ~17! by an integral overk, and do the integral to obtain

M52
kBT

kF
(

r ,m,s50

`

amL expS 2
v rsL
2kF

D
3sinFLsS kF2

Em

kF
D G . ~18!

Here, v r5p(2r 11)kBT is the Matsubara frequency an
am5]Em /]B. ~We have dropped the ‘‘leading’’ term in th
Poisson formula that totally neglects the discrete quan
nature of the states and which therefore cannot produc
magnetization.! As an example@3,4#, takekBT ten times the
level spacing of all levels, i.e.,kBT520p in our units. Then,
v0L/2'300. If kF'3002600, so that the square contain
about 2-63104 electrons, the exponential suppression w
not be too serious forr 50, s51. However, largerr or s do
not contribute much.@In the trace formula approach,s gives
the number of repetitions of the primitive periodic orbit a
the sum overr is explicitly carried out.#

Equation~18! shows that states with largerL, i.e., smaller
spacing, are suppressed, exactly as seen from the trace
mula in terms of periodic orbits. It also shows that relative
large field dependence of the levelsam , is important. For the
square, the (1,1) states have the smallestL and also the
largestam . The (2,1) resonance does not couple to a sm
constant field. It is also seen that if Eq.~18! is averaged over
many squares of somewhat different sizes, because of
se
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oscillations of the sine, the result is much reduced and i
necessary to go to higher order indm.

In Fig. 2 we show]Em /]B̂ as a function ofEm /B̂ for the
~1,1! resonant states, whereB̂5Bk/2L. According to Eq.
~18!, if the sign of]Em /]B̂ is negative the contribution o
the corresponding state is paramagnetic. For an exact,
dimensional wave functionCn,m with energy En,m , it is
known that]En,m /]B̂52(L/k)*d2r @r3 j (x,y)#z , i.e., the
expectation value of thez component of the magnetizatio
density. Here the current is

j ~x,y!52 ReC* ~x,y!S 1

i
“2A~x,y! DC~x,y!. ~19!

In our approximation, according to Eq.~15! above,
]En,m /]B̂ is equal to 2]Em /]B̂. It follows from Eqs.~8! and
~9! above, that]Em /]B̂5^V̂(x)&m5^umuV̂(x)uum&, where
V̂5V/B̂. Since V̂,0 for xP@2 1

2 , 1
2 #, and V̂.0 for x

P@ 1
2 , 3

2 #, etc., we see that the sign of the magnetic respo

of a given wave function depends on which region ofV̂
dominates the expectation value. Of course, the classica
riodic orbits in these two regions have the expected sens

Finally, we may express]Em /]B̂ quasiclassically as

]Em

]B̂
5

E dxV̂~x!@Ê2V̂~x!#2~1/2!

E dx@Ê2V̂~x!#2~1/2!

. ~20!

Here Ê5Em /B̂ can be treated as a continuous variable,
that ]Em /]B̂ as a function ofÊ falls on a continuous curve
that in this approximation is independent ofB̂. The integrals
are between the turning points. ForÊ near the minimumV̂min

of V̂, ]Em /]B̂'V̂min . For Ê at the maximum ofV̂, the in-
tegrals diverge atx51, thus making]Em /]B̂ positive, and
also giving the cusp in Fig. 2. Of course, our simple qua
classical approximation needs corrections in this case.

FIG. 2. ]Em /]B̂ vs Em /B̂. Stars are form50,2, . . .mmax

514, . . . andn562, B525. The continuous curve is Eq.~20! of
the text.
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The quantization of the transverse motion relatesÊ

5Em /B̂ andm according to the standard formula

E dxAÊ2V̂~x!5pS m1
1

2D /AB̂. ~21!

The spacing of the quantum states therefore depends oB̂.
The level mtop such thatEmtop

'V(1) satisfies, approxi-

mately mtop'0.6AB̂. The states withk5142 andB525
were chosen in part because with these parameters ther
state very near the diamagnetic maximummtop514, and an-
other state withm510 for which]Em /]B̂ is very small. On
the other hand, with these parameters, while our approxim
states are very good for smallm, the transverse momenta a
becoming large enough~as compared with the longitudina
momenta! that our approximation deteriorates significantly
m>10, especially in regions of the square where the w
function is small.

D. Visual representations of eigenstates

Eigenstates of Hamiltonians not satisfying time-rever
invariance are rarely shown graphically in the literature,
cept for trivial cases. In the invariant case, numerically p
duced picture galleries of eigenstates for systems such a
Bunimovich stadium@15#, have led to a great deal of intere
and insight, both theoretical@14# and experimental@16#.

‘‘Magnetic’’ states are not real but are inherently com
plex. A complete graphical picture of a complex state wo
seem to require twice the number of pictures as that ne
sary for a real state satisfying time-reversal invariance.
addition, the states themselves are gauge dependent,
only gauge-invariant quantities are physically meaningfu

A difference of the magnetic case as compared with
time-reversal invariant case is that generallyC or j do not
vanish along nodal lines, but rather only at isolated no
points. There may of course be symmetries or boundary c
ditions requiring these quantities to vanish along a line,
in general the representation of wave functions by their no
patterns@15# is not available in the absence of time-rever
invariance.

Two gauge-invariant quantities we choose to display
the absolute value squared of the wave functionuC(x,y)u2
and the current density. The current density is a two dim
sional vector field that is divergence free“• j50. The one-
dimensional surface of section states are also of interest

We first show a picture of a classA state, which is quite
simple to represent. Figure 3 showsuC(x,y)u2 for n562,
k'2p62/L'140, B531.4,ABk'66, andm50, which im-
plies the symmetryr 50. For such a well-localizedum , each
term in Eq.~12! dominates one side of the rectangular pe
odic orbit. For example, nearx52y5 1

4 , only the first term
s50, in the sum ~12! is appreciable. In this region
uC(x,y)u' u0(x2y2 1

2 ) which is well approximated by a
Gaussian.

There is interference near the square edges@e.g., near
(0,2 1

2 )#, and two terms contribute appreciably. Near th
point then
is a
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C~x,y!'ue~1/2!np iyu0~x2y2 1
2 !1e2~1/2!np iyu0~2x2y

2 1
2 !u'u2u0~x!cos1

2 npyu ~22!

so thatuC(0,2 1
2 11/n)u at its first maximum near (0,2 1

2 ) is

about twice as large asuC( 1
4 ,2 1

4 )u. @Note thatn mod 4
52.# The current density is thus largest close to the mid
of the square edges and it is of course nearly parallel to
edge there. In this case, the shape ofC close to an edge is
given byum(x), as can be seen in Fig. 3.

Figure 4 shows the streamlines of the current in this st
The direction of the streamline gives the direction of t
current flow, while the density of streamlines is proportion
to the magnitude of the current density. That is, between
two neighboring streamlines, the same total current flo
The state in Fig. 4 isparamagnetic, that is, the current cir-
culates in the opposite sense from that of a free particle in
field. The choice of which streamline to display is eas
obtained in this case, since each line crosses a symmetry
like x50, yP@2 1

2 ,0#, once and only once. The current h
but one interior zero, at the center of the square.

Figure 5 shows the staten560, B531.4, andm51,
which has one ‘‘transverse node.’’ This node does not g

FIG. 3. A three-dimensional view of the absolute value squa
of localized paramagnetic state forn562, B531.4, andm50. The
cut near the side of the square is proportional tou0, which is close
to a Gaussian. Near the side there are interference oscillations
two main terms in Eq.~12!.

FIG. 4. Streamlines of the current of the state shown in Fig
The interference peaks nearx50 are apparent.
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rise to a nodal line in the total wave function, of cours
although the wave function is small in regions correspond
to the node. The states have rotational symmetry, and
show a different representation in each corner of the u
square.

One remarkable feature of these states,m50,1 is that they
are localized very near the central paramagnetic diam
orbit. Theoretically, for largeBk this localization can be a
tight as one pleases. Although this is a result of our theo
which uses a ‘‘potential’’ functionV(x), it is clear thatV(x)
is really something that arises from Aharonov-Bohm pha
and thus does not have a corresponding classical effect
deed, we find the same kind of effect in the AB flux-lin
case, for largeBk and smallB. In that case it is obvious tha
the localization cannot be a classical effect. This localizat
is thus like Anderson localization@17# in the sense that, ab
sent phase interference, localization would not exist.
course, the random disorder aspects of Anderson localiza
are not present. It is also true that rather similar states lo
ized near stable periodic orbits are often found, but then
classical and quantum localization are related.

The next figures, Figs. 6–11, haven562 andB525. Fig-
ures 6 and 7 show a state of classC corresponding tom
514 which is energetically at the top of the periodic pote
tial corresponding to the (21,1) resonance. This state is di
magnetic with the current circulating in the opposite se
from the states withm50,1. The theoretical and numeric
wave functions are shown.

The theoretical predictions in this case are considera
less good than for the states with smallm. First, the trans-
verse wave number is no longer quite so small compa
with the wave number along the path. Second, since acc
ing to Eq. ~12!, as many as four approximately found com
ponent states are added, there may be relatively large er

FIG. 5. The state withn560, B531.4, andm51. Counter-
clockwise from lower left, a density plot ofuCu2, current stream-
lines, a density plot ofu j u, and a dot-stick representation of th
current.@The dot is at the calculated point, the size and direction
the stick represent the current density magnitude and direction.# The
functionu1(x) has a node atx50. This appears as a narrow valle
in the center of the ridge of current, although there is no node
nodal line there. The numerical result is shown, which is very w
represented by theory.
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especially in those parts of the square where destructive
terference is important and the final wave function is sm
Nevertheless, Eq.~12! is a quite good representation of th
more accurate numerical results.

In Fig. 8 we show the statem510, for which]E10/]B is
very small. The streamlines of this state are rather striki
Note that there are large current loops that have oppo
magnetic polarity. Again, the approximate wave functi
captures many features of the exact one, although it does
reproduce the finer details. In this case we show also, in
9, the transverse stateu10(x) and the normal derivative o
C62,10 on the surface of section. Although for smallm, the
normal derivative on the surface of section bears an un
standable relation toum , it is quite complicated for trans
verse energies this large.

Finally, in Fig. 10 we show streamlines for the sequen
of states m56,8,10,12. Although there are systema
changes of pattern, we have not tried to rationalize th
changes. We conclude that even though the wave functio

f

r
ll

FIG. 6. The state,m514, n562, B525 of maximum diamag-
netism, as found numerically. The same representations as Fig

FIG. 7. The same state as Fig. 6, as predicted by our appr
mation. Form this large, the theory does relatively poorly, b
nevertheless is qualitatively correct.
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Eq. ~12! is fairly simple, it is difficult to foresee interferenc
patterns when four terms are important.

These relatively complicated states are harder to repre
adequately. In both theory and numerics the“• j50 charac-
ter of the current is not exact. Numerically following
streamline, particularly in the neighborhood of a zero of
current, is difficult. We therefore imposed the divergen
free character by representingj (x,y)5“3 ẑx(x,y). We cal-
culatedx as a symmetrized integral ofj x , where j x was
obtained either numerically or theoretically. The streamlin
are then contour lines ofx.

The diamagnetic states are not so spatially localized as
low m states, although they continue to have a sort of loc
ization in ‘‘momentum’’ space, as we show below. Mo
generally, asm increases, the states become more delo
ized, and eventually become independent ofB. This means

FIG. 8. The state,m510, n562, andB525 of nearly canceling
para- and diamagnetism. Numerical results are shown as be
except for the upper left corner where the theoretical streamlines
shown. Theory and numericals differ primarily in the low curre
regions. Notice there is a diamagnetic current loop encircling
diagonals and canceling paramagnetic loops in the triang
wedges between the diagonals.

FIG. 9. The upper figure shows, form510, n562, andB525
the normal derivativeu]C62,10/]yuy52

1
2

, obtained numerically.
The lower figure isu10(x). Becauseu10(x) extends significantly
outside the domain@2

1
2 , 1

2 #, and is ‘‘folded’’ back into that domain
with a rapidly varying additional phase factor to construct]C/]n,
these two constructs are not so intuitively related as for lowem
states, which are more localized.
nt

e
e

s
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l-

that for largerm all four terms in Eq.~12! make comparable
contributions at an arbitrary typical pointx,y, whereas in the
localized case, only one or two terms contribute. This giv
interference oscillations inucmu nearuxu' 1

2 as shown in Fig.
9.

E. Momentum localization

We have assumed thatn@m, and thatum is slowly vary-
ing compared witheipnx/2. We may expandum5(ûm,le

ip lx,
where l is an integer forr even and half-odd integer forr
odd. Also ûm,l5(21)mûm,2 l . The unperturbed state
@sinpp(x11

2)sinpq(y11
2)# can be labeled by integersp,q

with unperturbed energies (p21q2), dropping a factorp2.
Equation ~12! is a superposition of unperturbed stat

with quantum numbersp5 1
2 n1 l , q5 1

2 n2 l . In particular,
the energiesp21q25 1

2 n212l 2 are closer to the base energ
1
2 n2 than to the base energy of the next representationen11
' 1

2 n21n. Of course, if the perturbation is symmetric und
rotation, the next base energies coupled areen64'en64n.

re,
re

e
ar

FIG. 10. Streamlines for a sequence of states,m56,8,10,12,n
562, andB525 counterclockwise from the lower right.

FIG. 11. The decomposition of the state of Fig. 6 in theB50
basis states. These are sinpp(x1

1
2)sinpq(y1

1
2) symmetrized and

normalized.
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There are, however, other unperturbed states withp2

1q2'en . For example, 7214925e70. However, the matrix
elements of a smoothly perturbed Hamiltonian,Hpq,p8q8 in
the unperturbed basis, are small ifup2p8u or uq2q8u is
large. Because the perturbation due to a uniform field ha
singular third derivative, these perturbations drop off a
power law, and this relatively long-range effect in mome
tum space is the source of the diffraction corrections.

In Fig. 11 we show the magnitude of the amplitudes of
unperturbed states combining to make the staten562, B
525, andm514. The area of a circle is proportional to th
square of the amplitude. Above the main diagonal we sh
the theoretical result. All amplitudes lie on the line 312 l ,
311 l . Below, we show the result for the numerical wa
function. The circlep21q2523312 is also shown. Our
theory is starting to need corrections form this large.

Thus, an interpretation of our method that yields the (1
resonance states of Eq.~12! is that we effectively diagonalize
the Hamiltonian in a basis restricted to the unperturbed st
nearly ‘‘degenerate’’ withen and close to1

2 n, 1
2 n. This is the

case for the uniform field, and indeed, we achieve agreem
between full numerical diagonalization, diagonalization
stricted to ‘‘degenerate’’ states, and the procedure using
solution of the differential equation Eq.~8!.

VII. AHARONOV-BOHM FLUX LINE

The above approach can be generalized to deal with n
uniform flux configurations. To get the potentialV associated
with the (1,1) resonance, all that is needed is to be abl
calculate the flux contained within a (1,1) periodic orbit. W
consider here the case of the Aharonov-Bohm flux l
~ABFL!. Some further results are published elsewhere@18#.

While much of the above discussion can be carried o
to the ABFL, in the ideal case of a zero radius line there
strong diffraction effects that limit the applicability of ou
theory. We therefore begin by defining the alternative pr
lem of a finite-size flux line or tube. This is more realistic
actual experiments are contemplated.

Let r give the linear scale of the flux tube. We may thin
of the flux as uniform inside a tube of this radius, or as be
distributed in some way, say as a Gaussian, withr giving the
scale of the distribution.~We actually used a square tube
sider. Even more accurately, we used four quarter stren
tubes symmetrically located, which allows a symmetry
duction in the numerics. In the approximation of our theo
this gives essentially the same result as a single circular t
The field inside a single flux tube isB05f/4r2 andf is the
total flux.! The typical angular deflection suffered by a cla
sical particle traversing this field is

du;~f/f0!/kr. ~23!

To avoid diffraction we requiredu to be small. This can be
achieved, of course, ifkr is large, but that is not necessar
In the numerical work shown, we takef/f050.1, andr
50.01, whilek>140. An alternative and equivalent cond
tion is to insist that, on the appropriately defined average@8#,
the terms in the Hamiltonian satisfŷ (eA/c)2/2m&
!^ep•A/mc&.
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The results depend on where the flux line is located.
consider first the case that it is located atx50, y52 1

2 1a,
where 0<a< 1

2 . Again, we consider states related to t
~1,1! resonance. This leads as before to Eq.~8! but now we
find a potential

VAB~x!52Bk/L;xP@2a,a#,

VAB~x!51Bk/L;xP@212a,211a#, ~24!

VAB~x!50;x¹@2a,a#ø@212a,211a#

for points in @2 3
2 , 1

2 #, and VAB is extended periodically by
VAB(x12)5VAB(x). For the flux lineB52pf/f0.

Actually, Eq.~24! is for the ideal flux line. The ideal cas
has step function jumps in the potential that are smoot
out at finiter. In other words, the sharp jump atx5a, is
replaced by a smooth rise beginning atx5a2r and ending
at x5a1r. The exact shape of the rise depends on the
tribution of flux in the line. As long as the transverse wav
lengths in the solution of Eq.~8! are long compared withr,
the finiteness ofr does not play a significant role in ou
theory at this level of approximation.

For the ideal, zero radius ABFL, there are significant d
viations from this scenario. Indeed, most matrix elements
the ABFL perturbed Hamiltonian in the unperturbed ba
are infinite. However, it is a weak, logarithmic infinity, an
our theory seems to capture the main shape of the w
function, although at the relatively low energies for whic
numerical results are available, there are significant cor
tions. We consider these to be diffractive corrections, aris
from a characteristic length shorter than the wavelength.

It is clear thatBk/L is the important parameter in the U
case, while for the ABFL, bothBk/L and a are important.
We begin with the casea5 1

4 , which has a ‘‘square-well
potential’’ of width 1

2 nearx50. For sufficiently largeBk/L,
there will be ‘‘tight-binding’’ solutions approximately
um(x)5cos(m11)px/2a, uxu,a, and zero elsewhere. Thi
expression holds for sufficiently small evenm, and for oddm
the cosine is replaced by the sine. The energyEm'2Bk/L
1p2(m11)2/4a2.

Figure 12 is for the ABFL case, withn586, m50, r
50, anda5 1

4 . Figure 12 curvea showsu0(x) and u0(2x
21), its extension intox,2 1

2 , reflected. For these param
eters,u0 is not extremely localized, and extends significan
outside@2 1

2 , 1
2 #. The remaining plots giveucmu5u]C/]nu.

Figure 12 curveb plots Eq.~12! and Fig. 12 curved is from
diagonalization in the limited basis of the ‘‘degenerate
states. Clearly, these two approximations are nearly
same. Figure 12 curvesc and d are obtained by numerica
diagonalization in the complete unperturbed basis, for
finite-size flux tube and the ideal flux line, respective
Clearly, for these parameters, there is significant diffract
from the flux tube. It is somewhat less than for the ze
radius line but the two patterns have some resemblance.
fraction evidently modifies the interference between differ
parts of the wave function in an irregular way. The over
shape ofu]C/]nu is well predicted by the theoreticalu0. To
give a sense of the irregularity of diffraction effects on t
wave function, we show in Fig. 12 curvef the function for
n570, a somewhat lower energy. In this case, according
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theory, theu0 is essentially the same, and the interferen
fringes have a somewhat longer wavelength, on the aver
The diffractive effects are quite different in detail, howev

It is clear from this result that the ABFL localizes th
particle, and to do so, it must of course exert a force. Th
flux line can exert a transverse force is now well establis
@19#.

In Fig. 13 we show currents from a state witha5 1
2 , i.e.,

the much studied case with the flux line at the center of

FIG. 12. ABFL case,a5
1
4 , f50.1f0 , r50.01, n586, and

m50. ~a! Upper curve,u0(x), lower curve,u(212x). This is
repeated in the other pictures. The remaining plots are ofu]C/]nu.
~b! is the theoretical result from Eq.~12!, ~d! is from diagonaliza-
tion in the ‘‘degenerate’’ basis of Section V~E!, and~c! is from full
numerical diagonalization. The interference oscillations scale
u(212x). ~e! and ~f! are numerical results for the ideal sing
ABFL (r50), with n582, and n570. The additional detailed
structure is attributed to diffraction, but the overall scale is giv
well by our theory.

FIG. 13. Ideal zero radius flux line at the square center. Up
figure, numerical current streamlines for a quarter of the squ
Lower figure, theoretical current densityj y(x,0). Dashes indicate
the numerical minima.
e
e.

.

a
d

e

square@7#. Again,m50, r 50, andn582. The upper part of
the figure shows numerical streamlines for a corner of
square. Although the state is spatially not well localized
does have a strongly ‘‘paramagnetic’’ current structure.
paramagnetic we meandEm /df,0.

The lower part shows the theoretical current densityj y(x)
for y50,xP@2 1

2 ,0#, that is, the current density along th
upper edge of the upper figure. A simple approximate f
mula for j y is j y(x)}2(cosnpx/2)2@um(2x2 1

2 )22um(x
2 1

2 )2# which gives double zeroes of the current at equa
spacedx5(2l 11)/n. In this casej y is negative and the
factor depending onum has no zeroes except atx50, for
m50.

The maxima are atj y50; j y<0. Theory and numerics
closely agree on the period and shape of the oscillations,
the lower envelope of the two differ. We mark with horizo
tal bars the lower envelope of the numerical calculatio
which is considerably more irregular than given by o
theory. This structure of zeroes ofj x is a consequence of
symmetry, namely,y↔2y, together with complex conjuga
tion. This means thatC(x,0) is real and therefore genericall
will have zeroes as a function ofx.

VIII. SUMMARY

A. Extensions of the results

We have shown how to classify and find eigenstates o
charged particle in a square billiard subjected to a magn
flux that is classically weak. It is not necessarily weak qua
tally, however, and large remarkable changes in the w
functions are found which sometimes significantly locali
the wave function. We used two basic flux configurations
uniform field and an Aharonov-Bohm flux line. The plac
ment of the ABFL is important. Of lesser importance is a
finite radius to the line, at least in the range of parameters
use. We exhibited some of the wave functions in seve
forms and sequences, concentrating on wave functions
nected with the (1,1) resonance, that is, connected with
riodic orbits of the flux free square whose velocities ma
angles of 45° with the coordinate axes.

These results can be readily generalized to higher-o
resonances. For a given energy the effects diminish q
rapidly as the order increases, but in principle, at sufficien
high energy, any given resonance can show strong magn
effects. We give a few results in Appendix B.

One can extend these results to integrable systems o
than the square billiard, and to other flux configuratio
There are other billiard shapes, such as the rectangle, ce
triangles, the circle, and the ellipse. One may also stu
‘‘soft billiards,’’ e.g., a confining potential of the form
U(x,y)5U1(x)1U2(y) where Ui is some sort of anhar
monic potential. Soft billiards are more accurate represe
tions of mesoscopic systems than are hard wall billiards,
the additional theoretical effort they require is not usua
made. A practical difficulty, although not one of principle,
that it may be necessary to resort to action-angle variab
and it may be tedious to find the periodic orbits of the flu
free system, if some tiling trick cannot be used.

In any case, the first steps of the program are to choo
convenient surface of section, choose the resonance of in
est, find the AB phaseF(x,x8), and the effective potentia
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V(x). Much insight can be gained at this level.
A much larger class of systems solvable by this techni

are nearly integrable systems subjected to a flux. For e
ample, one could start from a nearly square trapezoid. T
one would have a double perturbation of the square,
from the flux, the other from the change of shape. Each
these perturbations can have big quantum effects, and
combination of the two can be quite different from each o
separately, especially since one breaks time-reversal inv
ance and the other doesn’t. Again, finding the effective
tential is key to understanding the qualitative results.

B. Possible experiments

There are possible experiments and even interesting
vices that might be made, if time reversal can be brok
Having unusual wave functions suggests some of the po
bilities. Probes of the system will depend on whether
wave function is large or small at the position of the prob

Mesoscopic systems are of great current interest. In
case, electrons are the particles and there is a magnetic
The system of Le´vy et al. @3# consisting of isolated metallic
‘‘squares’’ is a case of this type, but one can imagine le
weakly connected to a metallic square whose coupling
pends on the shape of the wave function at the Fermi le
and the position of the lead.

Another type of mesoscopic system is formed of surfa
electrons in ‘‘corrals’’ on a metallic surface@20#. The wave
functions of such electrons can be probed with atomic ac
racy with a scanning tunnel microscope. Achieving an app
priate parameter range will be difficult, but perhaps not i
possible. The corrals are leaky and do not really confine
electrons to their interior, but in many cases that idea se
to work, at least qualitatively.

Another kind of system is the shallow square or rectan
lar container of liquid, which is vibrated to set up standi
waves. Instead of a flux, the system can be rotated wit
uniform angular velocity. This differs from the uniform mag
netic field in that theA2 is absent from the Hamiltonian, bu
since under our assumptions that term can be neglected
way, the same kind of results are expected. One can
introduce a nonideal ABFL. This is done by making a sm
hole in the tank and allowing the water to flow out with
certain vorticity. Experiments on such a system have b
performed@21#, although scattering rather than eigensta
was studied. Such an experiment would certainly have pe
gogical value, and if the experiment is done, it may in fact
the first detailed observation of a nontrivial persistent curr
state.

Still another system is the thin square microwave cav
Here the ‘‘quantum’’ waves are microwaves. There is
quantity directly equivalent to the magnetic field. Howev
one can replace part of the boundary by a ferrite strip@22#,
say between@2a,a# on one side of the cavity. The phas
shift of the microwave upon reflection from the ferrite d
pends on the direction of magnetization of the ferrite and
direction of incidence of the microwave. This gives as
effective potential exactly that of Eq.~24!. There is then a
localized eigenstate circulating the cavity in one directio
but not the other. A similar situation from the point of vie
of diffraction and effective potential, but maintaining tim
e
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reversal invariance, is the ‘‘step’’ billiard@23#. This is a
square billiard of sideL say, with one side moved down b
dL5eL for uxu,a. The perturbed (1,0) resonance sta
‘‘see’’ a square-well effective potential to first approxim
tion. If kdL is small, butkALdL>1, our theory works, gives
nontrivial localization, and is similar to the flux line with
smallf/f0 . The rangekdL5p, i.e.,dL a half-wavelength,
gives no phase shift for normal incidence and is similar to
ABFL with f/f051. Experiments on this system could b
carried out in several contexts.

C. Comparison with other methods

An issue that has been raised is whether older meth
could have found the solutions we have obtained. For
ample, the Birkhoff-Gustavson@BG# normal form approach
is quasiclassical and also relies on a small classical par
eter. We discussed the relation of that approach to ours
viously @11# and we believe BG would need considerab
modification to solve the problems that are the subject of
paper.

On the other hand, there are the ‘‘adiabatic’’ metho
like Keller-Rubinow @24#, and its relatives and extension
such as the ‘‘parabolic equation method’’ of Leontovich@25#
and Fock@26# and the ‘‘etalon method’’ of Babich and Bul
dyrev @27# where there is not necessarily an explicit sm
classical perturbation. These methods could likely be use
obtain our solutions if applied to the magnetic-field proble
In a paper to be submitted, we discuss the relationship
these methods, as well as that of Born and Oppenheime
ours.

D. Conclusions

We have solved a characteristic example of quant
states in a weakly perturbed integrable system. The st
and their energies can be classified and found to good
proximation. The wave functions are quite nontrivial and
teresting, as compared with the states of the integrable
tem. The states of a hard chaotic system are also
individually interesting, except for some weak ‘‘scars,’’ r
quiring resort to statistical studies and averages over m
states in such systems.

Our technique applies to a very large class of syste
which includes experimental systems. The particular case
emphasize breaks time reversal invariance, and the ei
states have persistent currents. As far as we know, these
the first published nontrivial examples such states.
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APPENDIX A: TWO-DIMENSIONAL WAVE
FUNCTIONS

In this Appendix we find the two-dimensional wave fun
tion. If a solution toc5Tc is known, the wave function in
the square can be found by evaluating the integral over
surface of section@12#

C~r !5E G~r ,x8;E!c~x8!dx8. ~A1!

In this case

G~r ,x8;E!5 (
cl. tr.

1

2U 1

2pk

]2S

]x8]l '

U1/2

3expF iS~r ,x8;E!2 i
p

2
nG ~A2!

in our units. Here the sum is over the~unperturbed! classical
trajectories going from a pointx8 on the surface of section t
a point r inside the square, whereS(r ,x8;E) is the reduced
action for this trajectory,l ' is the direction perpendicular t
the trajectory at pointr , and n is the Maslov index. In a
single square scheme we take the surface of section to b
lower side of the square21/2<x8<1/2, y8521/2. Then
c(x8) is a linear combination of functionsc I and c II de-
scribed in the text such thatc(61/2)50 ~there should be no
flow through the ends!. It follows then that um(x812)
5(21)rum(x8) and

c~x8!5eikx8um~x8!1 i re2 ikx8um~x821! ~A3!

with r definedby Eq. ~13!. Here we have also used a zer
field quantization conditionk5pn/2 and the property
um(x8)5(21)mum(2x8). Note that in the surface of sectio
picture r does not have a direct interpretation as a repres
tation label.

We evaluate the integral~A1! in the stationary phase ap
proximation. As we shall see, only the 45° orbits surviv
For a given pointr5(x,y) there are four such orbits: tw
starting atx18 and two atx28 ~Fig. 14!. Each orbit gives one
term in Eq.~12!. Note that the orbits with the positive~nega-

FIG. 14. A diagram showing how the full wave functio
C(x,y) is constructed from the surface of section wave functi
Two points on the surface of section,x18 , x28 dominate in the sense
of stationary phase, and there are two paths from each of t
points to the point (x,y).
e

the

n-

.

tive! x projection of the momentum atx8 are generated by
the first ~second! term in Eq.~A3!.

Although the following calculation depends in which se
tor inside the square the point lies, the final result is indep
dent of sector. So for definitiveness we assumey,x,2y,
that is the point lies below the diagonalsy5x and y52x.
We have numbered the orbits bys50, . . . ,3according to the
terms in Eq.~12! they represent. Fors50 orbit, expressing
the action in terms of the distance,S(r ,x8;E)5kL(r ,x8)
[kA(x2x8)21(y11/2)2, we find the prefactor in Eq.~A2!

U 1

8pk

]2S

]x8]l '

U1/2

5S 1

8A2pL
D 1/2

. ~A4!

The stationary point in the integral~A1! is determined by the
exponents in Eq.~A2! and in the first term of Eq.~A3!. It is
x185x2y21/2, as in a 45° orbit. Thes50 wave function is
then

C0~x,y!5eik(x1y)um~x2y2 1
2 ! ~A5!

dropping a constant factork21/2ei (k/22p/4)/2. The terms with
s51,2,3 can be obtained in the same manner with an ap
priate addition of the Maslov phase for each bounce.

If r is located in a different sector of the square, the
sults remain the same if proper account is made of
Maslov phases. The labeling of the orbits is invariant if do
by the rule:s50 trajectory arrives tor from the South-West,
s51 from the South-East,s52 from the North-East, ands
53 from the North-West.

It is worth noticing that Eqs.~A5! or ~12! are valid only
up to the square-root order of the small parametere5B/k of
the perturbation theory behind our paper. If we wish to o
tain the results valid to the first order ofe we should~a! use
a better approximation forum(x8) @11#, ~b! add the vector
potential term to the actionS(r ,x8;E), and~c! find a correc-
tion to the stationary point due toum(x8).

Alternatively, the above calculation can be carried out
the repeated square scheme defined in Sec. III. The sur
of section is then the liney521/2 ~identified withy53/2).
We can restrict ourselves to the trajectories with the posi
x andy projections of the momentum in this extended ma
fold. Then only c I(x8) is needed to generate a comple
two-dimensional wave function. In order forc I to have a
period 2, the conditionum(x812)5(21)rum(x8) must be
satisfied. A pointr in the original square will be represente
by its images in four~up to a translation byDx52) domains
in the manifold. Each of these images is connected byone
45° orbit to the surface of section. These four orbits gene
the four termss50, . . . ,3 in Eq.~12! as follows: s50 is
produced by the pointr in the original domain,s51,3,2 by
its reflection about the right side of the square, upper side
the square, and the composition of both, respectively. Th
are no Maslov phases in Eq.~A2! in this case. However the
termss51,3, which are obtained by the odd number of r
flections, should be summed with an additional minus si
Indeed, the Jacobian of the coordinate transformation fr
the original square to the extended manifold is singular
the boundary. So, when the wave function on the manifold
folded back to the physical domain, a phase differencep will
be accumulated between each pair of domains related by

.
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reflection. Of course, this phase is analogous to the Ma
phase for an impenetrable wall.

APPENDIX B: HIGHER RESONANCES

For completeness, we give some results for higher re
nances, which can be labeled with relatively prime intege
p,q. These resonances are closely related to states of a
angle of side 1/p, 1/q. Obviously, for the square, the ene
gies forp,q are the same as those forq,p. The correspond-
ing states are also the same after a 90° rotation. However
up2qu/up1qu not too small, thep,q states and theq,p states
are different and are nearly uncoupled and there is a ne
doubly degenerate set of energy levels. The splitting of
exact levels, which are combinations ofpq andqp that are
eigenstates of the rotation operatorR, can be estimated by
using an analog of ‘‘chaos assisted tunneling.’’

The classical periodic orbits makeq bounces from thex
sides andp bounces from they sides. These resonant orbi
all have the same lengthLpq52Ap21q2. The maximal di-
rected area enclosed by an orbit is61/2pq. The energy is
knm

2 where
in

-

n,

a

22
v

o-
s,
ct-

or

rly
e

knm
2 'S 2pn

Lpq
D 2

1F11
p2

q2GEm
(q) ~B1!

and n is an integer. The first term is much larger than t
second. Again, we have the approximate quantization on
wavelengths in an orbit length.

The potentialVpq(x) depends onq being associated with
the x direction, thus the notationEm

(q) . This ‘‘transverse’’
contribution to the energy is of course symmetric inp andq,
that isq2Em

(p)5p2Em
(q) . The potential is

Vpq~x!5
q

p F L11

Lpq
G3

VFqS x1
1

2D2
1

2G , ~B2!

whereV is given by Eq.~9!. Vpq has period 2/q, rather than
2. The boundary condition on the eigenstates isu(x22)
5eibu(x), whereb52p frac@pn/(p21q2)# and frac indi-
cates the fractional part. The potential can be regarded
weak if kB!pqL pq

3 . If this condition is satisfied thepq
resonance can be ignored. Similar but somewhat more c
plex results can be obtained for rectangles and certain
angles.
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